Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1501-1512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249625

RESUMO

Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1ß, IL-6, and TGF-ß1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.


Assuntos
Ketamina , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Gravidez , Animais , Humanos , Feminino , Masculino , Ketamina/efeitos adversos , Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Modelos Animais de Doenças , Citocinas , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo
2.
Int J Dev Neurosci ; 83(3): 297-306, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016584

RESUMO

Poor nutritional quality in the early stages of development is associated with neurological diseases in adulthood. Studies showed that obesity-induced oxidative stress contributes to the genesis of neurological diseases through dysregulation of the brainstem and hypothalamus. Fluoxetine (Fx) is an antidepressant member in the family of selective serotonin reuptake inhibitors (SSRI) that can induce positive effects by reducing oxidative damage in brain tissues. We aimed to evaluate the late effect of Fx in the brainstem and hypothalamus of overnourished rats during development. Male Wistar rats, after birth, were randomly divided into the normal-nourished group (N, n = 9) and the overnourished group (O, n = 3). On the 39th day of life, the groups were subdivided into normofed, and the overnourished group treated or not with fluoxetine (10 mg/kg daily) (NF, NV, OF, and OV). All groups were treated from the 39th to the 59th day of life, and within 90 days, the tissues were collected for oxidative stress analysis. Briefly, our results showed that Fx treatment induced a tissue-dependent long-lasting effect in overfed animals, increasing the enzymatic defense (i.e., CAT and GST activity) in the hypothalamus, but more intensive, increasing the non-enzymatic defense (i.e., Total Thiols and GSH levels) in the brainstem. Overall, our study suggests that serotonin modulation at the final stage of brain development causes a long-lasting impact on brain structures in overfed rats at a different mode.


Assuntos
Fluoxetina , Estresse Oxidativo , Ratos , Animais , Masculino , Fluoxetina/farmacologia , Ratos Wistar , Hipotálamo , Tronco Encefálico
3.
Neurochem Int ; 162: 105454, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462683

RESUMO

It is well known that overnutrition, overweight, and obesity in children can modulate brain mechanisms of plasticity, monoaminergic systems, and mitochondrial function. The immediate effect of overnutrition during the developmental period has not been thoroughly examined in rats until the present. This study sought to evaluate the impact on adult rats of early life overfeeding and fluoxetine treatment from post-natal day 1 (PND1) to post-natal day 21 (PND21) relative to mitochondrial function, oxidative balance, and expression of specific monoaminergic genes in the hippocampus. The following were evaluated: mitochondrial function markers, oxidative stress biomarkers, dopamine-and serotonin-related genes, and BDNF mRNA levels. Overfeeding during the lactation period deregulates cellular metabolism and the monoaminergic systems in the hippocampus. Strikingly, serotonin modulation by fluoxetine treatment protected against some of the effects of early overnutrition. We conclude that overfeeding during brain development induce detrimental effects in mitochondria and in the genes that regulate homeostatic status that can be the molecular mechanisms related to neurological diseases.


Assuntos
Hipocampo , Hipernutrição , Animais , Feminino , Ratos , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Obesidade Infantil/metabolismo , Serotonina/metabolismo , Hipernutrição/metabolismo , Hipernutrição/fisiopatologia
4.
BMC Sports Sci Med Rehabil ; 14(1): 213, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527152

RESUMO

BACKGROUND: To evaluate the effects of 8 weeks of Aerobic Physical Training (AET) on the mitochondrial biogenesis and oxidative balance in the Prefrontal Cortex (PFC) of leptin deficiency-induced obese mice (ob/ob mice). METHODS: Then, the mice were submitted to an 8-week protocol of aerobic physical training (AET) at moderate intensity (60% of the maximum running speed). In the oxidative stress, we analyzed Malonaldehyde (MDA) and Carbonyls, the enzymatic activity of Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione S Transferase (GST), non-enzymatic antioxidant system: reduced glutathione (GSH), and Total thiols. Additionally, we evaluated the gene expression of PGC-1α SIRT-1, and ATP5A related to mitochondrial biogenesis and function. RESULTS: In our study, we did not observe a significant difference in MDA (p = 0.2855), Carbonyl's (p = 0.2246), SOD (p = 0.1595), and CAT (p = 0.6882) activity. However, the activity of GST (p = 0.04), the levels of GSH (p = 0.001), and Thiols (p = 0.02) were increased after 8 weeks of AET. Additionally, there were high levels of PGC-1α (p = 0.01), SIRT-1 (p = 0.009), and ATP5A (p = 0.01) gene expression after AET in comparison with the sedentary group. CONCLUSIONS: AET for eight weeks can improve antioxidant defense and increase the expression of PGC-1α, SIRT-1, and ATP5A in PFC of ob/ob mice.

5.
Brain Res ; 1797: 148098, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162496

RESUMO

To evaluate whether exercise training mitigates the deleterious effects of undernutrition during the developmental period in juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17 % or 8 % casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein non-trained (LS), Low-Protein Trained (LT), Normoprotein non-trained (NS), and Normoprotein Trained (NT). Trained rats performed aerobic exercise training (AET) for 4 weeks, 5 days a week, 1 h a day. 24 h from the last day of training, the animals were sacrificed. The tissues were removed to analyze indicators of mitochondrial metabolism, oxidative stress, and gene expression of GRP78, PERK, ATF6 ER stress markers, and BDNF. The results showed that undernutrition during development promotes deleterious effects on mitochondrial oxidative metabolism and induces reticulum stress in the hippocampus of juvenile rats. On the other hand, AET improves mitochondrial function and increases enzymatic and non-enzymatic antioxidant capacity, as well as declines ER stress. AET at moderate intensity for 4 weeks in male juvenile Wistar rats acts as a lifestyle intervention opposing the negative effects induced by a protein-restricted maternal diet.

6.
Life Sci ; 285: 119951, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34516994

RESUMO

AIMS: We sought to evaluate the effects of overfeeding during lactation on the feeding behavior and expression of specific regulatory genes in brain areas associated with food intake in 22- and 60-day old male rats. METHODS: We evaluated body weight, food intake of standard and palatable diet, and mRNA expression of dopamine receptor D1 (DDR1), dopamine receptor (DDR2), melanocortin 4 receptor (MC4R), the µ-opioid receptor (MOR), neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine-and amphetamine-regulated transcript (CART), serotonin (5-hydroxytryptamine; 5-HT) transporter (SERT), 5-hydroxytryptamine receptor 1B (5-HT1B), 5-hydroxytryptamine receptor 2C receptor (5-HT2C), Clock (CLOK), cryptochrome protein 1 (Cry1) and period circadian protein homolog 2 (Per2) in the striatum, hypothalamus and brainstem of male rats at post-natal days (PND) 22 and 60. KEY FINDINGS: Overfeeding resulted in significantly increased body weight through PND60, and a 2-fold increase in palatable food intake at PND22, but not at PND60. We observed significant increases in DDR1, DDR2, and MC4R gene expression in the striatum and brainstem and POMC/CART in the hypothalamus of the OF group at PND22 that were reversed by PND60. Hypothalamic levels of 5-HT1B, 5-HT2C and NPY/AGRP on the other hand were decreased at PND22 and increased at PND60 in OF animals. Clock genes were unaffected by OF at PND22, but were significantly elevated at PND60. SIGNIFICANCE: Overfeeding during early development of the rat brain results in obesity and altered feeding behavior in early adulthood. The altered behavior might be the consequence of the changes in food intake and reward gene expression.


Assuntos
Peso Corporal , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Comportamento Alimentar , Hipernutrição/fisiopatologia , Animais , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Ingestão de Alimentos , Feminino , Lactação , Masculino , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo
7.
Nutr Metab Cardiovasc Dis ; 31(5): 1622-1634, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33810953

RESUMO

BACKGROUND AND AIMS: It has been demonstrated that maternal low protein during development induces mitochondrial dysfunction and oxidative stress in the heart. Moderate-intensity exercise in early life, conversely, increases the overall cardiac health. Thus, we hypothesize that moderate-intensity exercise performed during young age could ameliorate the deleterious effect of maternal protein deprivation on cardiac bioenergetics. METHODS AND RESULTS: We used a rat model of maternal protein restriction during gestational and lactation period followed by an offspring treadmill moderate physical training. Pregnant rats were divided into two groups: normal nutrition receiving 17% of casein in the diet and undernutrition receiving a low-protein diet (8% casein). At 30 days of age, the male offspring were further subdivided into sedentary (NS and LS) or exercised (NT and LT) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. Our results showed that a low-protein diet decreases oxidative metabolism and mitochondrial function associated with higher oxidative stress. In contrast, exercise rescues mitochondrial capacity and promotes a cellular resilience to oxidative stress. Up-regulation of cardiac sirtuin 1 and 3 decreased acetylation levels, redeeming from the deleterious effect of protein restriction. CONCLUSION: Our findings show that moderate daily exercise during a young age acts as a therapeutical intervention opposing the harmful effects of a maternal diet restricted in protein.


Assuntos
Dieta com Restrição de Proteínas , Cardiopatias/prevenção & controle , Desnutrição/terapia , Mitocôndrias Cardíacas/enzimologia , Estresse Oxidativo , Condicionamento Físico Animal , Efeitos Tardios da Exposição Pré-Natal , Sirtuínas/metabolismo , Fatores Etários , Animais , Antioxidantes/metabolismo , Metabolismo Energético , Feminino , Cardiopatias/enzimologia , Cardiopatias/fisiopatologia , Masculino , Desnutrição/enzimologia , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Gravidez , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Corrida , Fatores de Tempo
8.
Behav Brain Res ; 383: 112531, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32014554

RESUMO

Early weaning is associated with disruption of eating behavior. However, little is known about the mechanisms behind it. 5HT and DA systems are key regulators of homeostatic and hedonic eating behaviors, respectively. Thus, this study aims to evaluate the effects of early weaning on feeding behavior and 5HT and DA systems. For this, rats were submitted to regular (PND30) or early weaning (PND15) and between PND250 and PND300 were evaluated food intake of standard diet in response to 4 h food deprivation, during the 24 h period and per phase of the circadian cycle, in addition to the palatable food intake. Additionally, body mass and mRNA expression of 5HT1B, 5HT2C, SERT, DRD1 and DRD2 were evaluated in the hypothalamus and brainstem. The results demonstrate that early weaning promoted an increase in standard food intake in response to a 4 h food deprivation in the 24 h period and in the dark phase of the circadian cycle, in addition to an increased palatable food intake. No differences in body mass between regular or early weaning were observed. In the hypothalamus, increased mRNA expression of SERT and DRD1 was observed, but decreased 5HT1B mRNA expression. In the brainstem, the expression of 5HT1B, SERT, 5HT2C, DRD1 and DRD2 was increased in early weaned rats. In a nutshell, the stress promoted by early weaning has programmed the animals to be hyperphagic and to increase their palatable food intake, which was associated with modulation of 5HT and DA systems.


Assuntos
Comportamento Alimentar/fisiologia , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , RNA Mensageiro/metabolismo , Desmame , Animais , Peso Corporal , Dopamina/metabolismo , Hiperfagia/metabolismo , Masculino , Ratos , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
9.
J Cell Biochem ; 120(5): 7341-7352, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30368910

RESUMO

Overweight and obesity are established factors underpin several metabolic impairments, including the cardiovascular. Although the diversity of factors involved in overweight/obesity-induced cardiovascular diseases, mitochondria has been highlighted due to its role in cardiac metabolism. As obesity can be originated in early postnatal life, the current study evaluates the effects of neonatal overfeeding on the cardiac mitochondrial bioenergetics and oxidative balance in rats that underwent an ischemia-reperfusion insult. Seventy-two hours after delivery, Wistar rat litters were randomly assigned into the control (C; nine pups per mother) and the Overfed (OF; three pups per mother) groups throughout the lactation period. At weaning, male offspring were fed with laboratory chow ad libitum until sacrifice at 30 and 60 days of life. Mitochondrial heart bioenergetics and oxidative balance showed to be deeply affected by neonatal overfeeding at both ages. Interestingly, after ischemia-reperfusion insult I/R (Langendorff or mineral oil incubation), most parameters evaluated in OF animals were not influenced by additional ischemic-reperfusion injury. Our findings demonstrated that suckling overfeeding deregulates cardiac mitochondrial alike to ischemia-reperfusion insult by disengaging electrical mitochondrial coupling and potentiate oxidative stress, wherein the neonatal overfeeding shows to be so detrimental as I/R. Our findings support the concept that nutritional insults in the critical development periods increase the risk for cardiovascular disease and mitochondria impairments throughout life while oxidative damage change between molecular targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...