Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 43(1): 327-340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957975

RESUMO

BACKGROUND: The inhibition of the enzyme telomerase (TERT) has been widely investigated as a new pharmacological approach for cancer treatment, but its real potential and the biochemical consequences are not totally understood. OBJECTIVE: Here, we investigated the effects of the telomerase inhibitor MST-312 on a human glioma cell line after both short- and long-term (290 days) treatments. METHODS: Effects on cell growth, viability, cell cycle, morphology, cell death and genes expression were assessed. RESULTS: We found that short-term treatment promoted cell cycle arrest followed by apoptosis. Importantly, cells with telomerase knock-down revealed that the toxic effects of MST-312 are partially TERT dependent. In contrast, although the long-term treatment decreased cell proliferation at first, it also caused adaptations potentially related to treatment resistance and tumor aggressiveness after long time of exposition. CONCLUSIONS: Despite the short-term effects of telomerase inhibition not being due to telomere erosion, they are at least partially related to the enzyme inhibition, which may represent an important strategy to pave the way for tumor growth control, especially through modulation of the non-canonical functions of telomerase. On the other hand, long-term exposure to the inhibitor had the potential to induce cell adaptations with possible negative clinical implications.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Telomerase/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
2.
Neurochem Int ; 99: 33-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27292695

RESUMO

Currently, there is no effective therapy for high grade gliomas. 8-Methoxypsoralen (8-MOP) is a compound used in the treatment of skin diseases combined with UV light irradiation. In this work, rat glioma C6 cells, normal astrocytes and human glioblastoma GL-15 cells comprised an in vitro model to evaluate the antitumor activity of 8-MOP. We found that 8-MOP promoted a time- and concentration-dependent reduction of cell viability in tumor, but not in normal cells. This effect was more evident in log-phase growing culture, indicating antiproliferative activity, which was confirmed by colony formation assay. Long-term effect of 8-MOP at low concentration was also attested. The concentrations used in the tests (0.02-0.4 mM) were lower than plasmatic concentration found in patients. Despite the treatment leads to considerable morphological changes and apoptosis when used at high concentrations, 8-MOP did not promote cell cycle arrest, change in migration pattern neither necrosis. In addition, we evaluated the effect of 8-MOP in MDA-MB-231, CT-26 and SCC-3 cell lines, derived from other kind of primary tumors, and found that CT-26 cells did not respond to 8-MOP treatment, indicating that this compound does not act through a generic mechanism. Coumarin derivatives structurally related to 8-MOP were screened for its antitumor potential and presented different patterns of biological activity, and then it was possible to suggest the relevance of 8-MOP molecular structure for antiproliferative action. Therefore, 8-MOP, a drug with an outstanding record of safety, and related coumarins are good prototypes for development of a new class of anti-glioma drugs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Glioma , Metoxaleno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta a Droga , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Metoxaleno/química , Metoxaleno/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...