Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 15(2): 2271597, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37876025

RESUMO

Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.


Assuntos
Disenteria Bacilar , Microbioma Gastrointestinal , Shigella , Cobaias , Humanos , Animais , Coelhos , Camundongos , Disenteria Bacilar/microbiologia , Modelos Animais de Doenças , Shigella flexneri , Ácido Ascórbico , Mamíferos
2.
Trends Microbiol ; 30(7): 643-653, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131160

RESUMO

Bacterial and fungal pathogens face various microenvironmental conditions during infection. In addition to acidosis, nutrient consumption, and hypercapnia, pathogen infections are associated with hypoxia, which is induced by bacterial and fungal respiration during the formation of foci of infection or biofilms. Consequently, the in vivo interaction between host immune cells and pathogens is anticipated to occur mainly under low-oxygen conditions. Various infectious disease models have reported that pathogens benefit from hypoxia, which dampens the oxygen-dependent antimicrobial activities of macrophages and neutrophils, such as the production of reactive oxygen species (ROS). Due to their dual respiration capacity (aerobic and anaerobic) or phenotypical adaptation (e.g., dormancy), pathogens have the capacity to survive and disseminate in the absence of oxygen. In addition, hypoxia modulates various mechanisms of pathogen virulence, promoting the dissemination of pathogens. Further investigations are still required to evaluate the relative importance of oxygen on the capacity of pathogens to invade and colonize host organs and to better understand alternative strategies developed by immune cells to circumvent pathogen dissemination in the absence of oxygen. Addressing this important and fundamental question in various models of infection may direct the development of innovative therapeutic strategies.


Assuntos
Micoses , Oxigênio , Humanos , Hipóxia , Neutrófilos , Espécies Reativas de Oxigênio , Virulência
3.
Cell Microbiol ; 23(8): e13338, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813807

RESUMO

Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.


Assuntos
Escherichia coli , Oxigênio , Bactérias , Bactérias Anaeróbias , Consumo de Oxigênio
4.
Nat Microbiol ; 4(11): 2001-2009, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31383999

RESUMO

Pathogenic enterobacteria face various oxygen (O2) levels during intestinal colonization from the O2-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we have previously demonstrated that epithelium invasion is promoted by O2 in a type III secretion system-dependent manner. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown. Assessing single-cell distribution, together with tissue oxygenation, we demonstrate here that the colonic mucosa O2 is actively depleted by S. flexneri aerobic respiration-and not host neutrophils-during infection, leading to the formation of hypoxic foci of infection. This process is promoted by type III secretion system inactivation in infected tissues, favouring colonizers over explorers. We identify the molecular mechanisms supporting infectious hypoxia induction, and demonstrate here how enteropathogens optimize their colonization capacity in relation to their ability to manipulate tissue oxygenation during infection.


Assuntos
Disenteria Bacilar/metabolismo , Mucosa Intestinal/microbiologia , Oxigênio/metabolismo , Shigella flexneri/patogenicidade , Animais , Hipóxia Celular , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Feminino , Cobaias , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Coelhos , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/metabolismo
5.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663636

RESUMO

Here, we provide a protocol involving the use of MUB40, a synthesized peptide with the ability to bind glycosylated lactoferrin stored at high concentrations in specific and tertiary granules of neutrophils. This protocol details how MUB40 conjugated directly to a fluorophore can be used to stain neutrophils in fixed/permeabilized tissues as well as how this can be used in live-cell imaging to assay for neutrophil activation and de-granulation. Neutrophil detection methods are limited to species-specific monoclonal antibodies, which are not always suitable for certain applications. MUB40 does not penetrate the cell membrane and is thus excluded from lactoferrin stored in non-activated/non-permeabilized neutrophils. MUB40 has the added benefit of recognizing lactoferrin from a broad host range, making it especially useful for comparing results in studies involving multiple research models, reducing the number of duplicate reagents, and simplifying protocols through single-step staining.


Assuntos
Mediadores da Inflamação/metabolismo , Neutrófilos/imunologia , Peptídeos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...