Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227945

RESUMO

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Assuntos
Prótons , Protetores Solares , Catecóis , Humanos , Melaninas , Solventes
2.
Org Biomol Chem ; 20(15): 3096-3104, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352717

RESUMO

Macrophage inducible C-type lectin (Mincle) is a pattern recognition receptor on myeloid cells that represents a promising target for Th1-stimulating adjuvants. We report on the synthesis of branched and aromatic glucose monoesters and glycosides and their activation of mouse and human Mincle. In studies using mMincle, derivatives containing aromatic groups in the 6-O-acyl chain were poor Mincle agonists, while analogues with branched lipophilic groups at the glucose 6-position and anomeric hydroxy or methoxy groups exhibited better Mincle-mediated agonist activity than compounds with a docosyl group at the anomeric position. In contrast, all derivatives, except those containing the aromatic groups on the 6'-acyl chain, were able to signal via hMincle, with different compounds exhibiting different requirements for the EPN motif in the carbohydrate recognition domain (CRD) of hMincle for signaling. Functional assays using human monocytes revealed that docosyl α-glucopyranoside leads to significantly higher levels of IL-1ß and IL-8 production by monocytes compared to those elicited by trehalose dibehenate (TDB). The facile two-step synthesis of docosyl α-glycoside in 75% overall yield makes it a particularly attractive target for adjuvant research.


Assuntos
Glucose , Glicosídeos , Adjuvantes Imunológicos/farmacologia , Glicosídeos/farmacologia , Humanos , Lectinas Tipo C/agonistas , Monócitos , Trealose
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725148

RESUMO

The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.


Assuntos
Anti-Inflamatórios/análise , Flavonoides/isolamento & purificação , Quelantes de Ferro/análise , Fenóis/isolamento & purificação , Psychotria/química , Rutina/isolamento & purificação , Animais , Avaliação Pré-Clínica de Medicamentos , Etnobotânica , Feminino , Genômica , Masculino , Medicina Tradicional , Metabolômica , Camundongos Endogâmicos C57BL , Plantas Medicinais/química , Saccharomyces cerevisiae , Samoa
4.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209692

RESUMO

Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.IMPORTANCEMycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.


Assuntos
Bactérias/classificação , Metagenômica , Policetídeos/metabolismo , Poríferos/microbiologia , Simbiose , Animais , Organismos Aquáticos/microbiologia , Bactérias/isolamento & purificação , Vias Biossintéticas , Metaboloma , Microbiota , Família Multigênica , Filogenia , Metabolismo Secundário
5.
Mar Drugs ; 18(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012664

RESUMO

The Trypanosoma brucei Hsp70/J-protein machinery plays an essential role in survival, differentiation, and pathogenesis of the protozoan parasite, and is an emerging target against African Trypanosomiasis. This study evaluated a set of small molecules, inspired by the malonganenones and nuttingins, as modulators of the chaperone activity of the cytosolic heat inducible T. brucei Hsp70 and constitutive TbHsp70.4 proteins. The compounds were assessed for cytotoxicity on both the bloodstream form of T. b. brucei parasites and a mammalian cell line. The compounds were then investigated for their modulatory effect on the aggregation suppression and ATPase activities of the TbHsp70 proteins. A structure-activity relationship for the malonganenone-class of alkaloids is proposed based upon these results.


Assuntos
Antozoários , Produtos Biológicos/farmacologia , Proteínas de Choque Térmico HSP70 , Trypanosoma brucei brucei , Animais , Relação Estrutura-Atividade , Tripanossomíase Africana
6.
Phys Chem Chem Phys ; 18(35): 24506-10, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27539138

RESUMO

Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...