Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 609(7929): 964-968, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171375

RESUMO

Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).


Assuntos
Fósseis , Dente , Vertebrados , Animais , China , Peixes/anatomia & histologia , História Antiga , Filogenia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
2.
Nature ; 609(7929): 969-974, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171377

RESUMO

Modern representatives of chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods) have contrasting skeletal anatomies and developmental trajectories1-4 that underscore the distant evolutionary split5-7 of the two clades. Recent work on upper Silurian and Devonian jawed vertebrates7-10 has revealed similar skeletal conditions that blur the conventional distinctions between osteichthyans, chondrichthyans and their jawed gnathostome ancestors. Here we describe the remains (dermal plates, scales and fin spines) of a chondrichthyan, Fanjingshania renovata gen. et sp. nov., from the lower Silurian of China that pre-date the earliest articulated fossils of jawed vertebrates10-12. Fanjingshania possesses dermal shoulder girdle plates and a complement of fin spines that have a striking anatomical similarity to those recorded in a subset of stem chondrichthyans5,7,13 (climatiid 'acanthodians'14). Uniquely among chondrichthyans, however, it demonstrates osteichthyan-like resorptive shedding of scale odontodes (dermal teeth) and an absence of odontogenic tissues in its spines. Our results identify independent acquisition of these conditions in the chondrichthyan stem group, adding Fanjingshania to an increasing number of taxa7,15 nested within conventionally defined acanthodians16. The discovery of Fanjingshania provides the strongest support yet for a proposed7 early Silurian radiation of jawed vertebrates before their widespread appearance5 in the fossil record in the Lower Devonian series.


Assuntos
Peixes , Fósseis , Filogenia , Animais , China , Peixes/anatomia & histologia , Peixes/classificação , Arcada Osseodentária/anatomia & histologia , Dente
3.
PeerJ ; 9: e11093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012725

RESUMO

Based initially on microfossils, Nostolepis is one of the first known 'acanthodians', which constitute a paraphyletic assemblage of plesiomorphic members of the total group Chondrichthyes. Its wide distribution has potential implications for stratigraphic comparisons worldwide. Six species of Nostolepis have been reported in China, including one species from the Xitun Formation (Lochkovian, Lower Devonian) of Qujing, eastern Yunnan. Acid preparation of rock samples from the Xitun Formation has yielded abundant acanthodian remains. Based on both morphological and histological examinations, here we identify five species of Nostolepis, including two new species. N. qujingensis sp. nov. is characterized by thin scales devoid of the neck anteriorly and the dentine tubules rarely present in the anterior part of the crown. N. digitus sp. nov. is characterized by parallel ridges on anterior and lateral margins of the crown, and the neck constricted and ornamented with pore openings. We extend the duration of N. striata in China from the Pridoli of Silurian (Yulungssu Formation) to the Lower Devonian in Qujing and report the first occurrences of N. amplifica and N. consueta in this region. This study increases the diversity of the Lower Devonian Xitun Fauna and provides a better understanding of the paleogeographic distribution of Nostolepis.

4.
PLoS One ; 15(2): e0228589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053606

RESUMO

The Sinacanthida ordo nov. and Mongolepidida are spine- and scale-based taxa whose remains encompass some of the earliest reported fossils of chondrichthyan fish. Investigation of fragmentary material from the Early Silurian Tataertag and Ymogantau Formations of the Tarim Basin (Xinjiang Uygur Autonomous Region, China) has revealed a diverse mongolepidid and sinacanthid fauna dominated by mongolepids and sinacanthids in association with abundant dermoskeletal elements of the endemic 'armoured' agnathans known as galeaspids. Micro-computed tomography, scanning electron microscopy and histological sections were used to identify seven mongolepid genera (including Tielikewatielepis sinensis gen. et sp. nov., Xiaohaizilepis liui gen. et sp. nov. and Taklamakanolepis asiaticus gen. et sp. nov.) together with a new chondrichthyan (Yuanolepis bachunensis gen. et sp. nov.) with scale crowns consisting of a mongolepid-type atubular dentine (lamellin). Unlike the more elaborate crown architecture of mongolepids, Yuanolepis gen. nov. exhibits a single row of crown elements consistent with the condition reported in stem chondrichthyans from the Lower Devonian (e.g. in Seretolepis, Parexus). The results corroborate previous work by recognising lamellin as the main component of sinacanthid spines and point to corresponding developmental patterns shared across the dermal skeleton of taxa with lamellin and more derived chondrichthyans (e.g. Doliodus, Kathemacanthus, Seretolepis and Parexus). The Tarim mongolepid fauna is inclusive of coeval taxa from the South China Block and accounts for over two-thirds of the species currently attributed to Mongolepidida. This demonstrates considerable overlap between the Tarim and South China components of the Lower Silurian Zhangjiajie Vertebrate Fauna.


Assuntos
Peixes/classificação , Fósseis , Microtomografia por Raio-X , Animais , Evolução Biológica , Osso e Ossos , China , Geografia , Filogenia
5.
Proc Biol Sci ; 285(1870)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29298937

RESUMO

Although relationships among the major groups of living gnathostomes are well established, the relatedness of early jawed vertebrates to modern clades is intensely debated. Here, we provide a new description of Gladbachus, a Middle Devonian (Givetian approx. 385-million-year-old) stem chondrichthyan from Germany, and one of the very few early chondrichthyans in which substantial portions of the endoskeleton are preserved. Tomographic and histological techniques reveal new details of the gill skeleton, hyoid arch and jaws, neurocranium, cartilage, scales and teeth. Despite many features resembling placoderm or osteichthyan conditions, phylogenetic analysis confirms Gladbachus as a stem chondrichthyan and corroborates hypotheses that all acanthodians are stem chondrichthyans. The unfamiliar character combination displayed by Gladbachus, alongside conditions observed in acanthodians, implies that pre-Devonian stem chondrichthyans are severely under-sampled and strongly supports indications from isolated scales that the gnathostome crown group originated at the latest by the early Silurian (approx. 440 Ma). Moreover, phylogenetic results highlight the likely convergent evolution of conventional chondrichthyan conditions among earliest members of this primary gnathostome division, while skeletal morphology points towards the likely suspension feeding habits of Gladbachus, suggesting a functional origin of the gill slit condition characteristic of the vast majority of living and fossil chondrichthyans.


Assuntos
Evolução Biológica , Tubarões/anatomia & histologia , Animais , Cartilagem/anatomia & histologia , Alemanha , Brânquias/anatomia & histologia , Osso Hioide/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia , Tubarões/classificação , Tomografia Computadorizada por Raios X , Dente/anatomia & histologia
6.
PeerJ ; 4: e1850, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27350896

RESUMO

The Mongolepidida is an Order of putative early chondrichthyan fish, originally erected to unite taxa from the Lower Silurian of Mongolia. The present study reassesses mongolepid systematics through the examination of the developmental, histological and morphological characteristics of scale-based specimens from the Upper Ordovician Harding Sandstone (Colorado, USA) and the Upper Llandovery-Lower Wenlock Yimugantawu (Tarim Basin, China), Xiushan (Guizhou Province, China) and Chargat (north-western Mongolia) Formations. The inclusion of the Mongolepidida within the Class Chondrichthyes is supported on the basis of a suite of scale attributes (areal odontode deposition, linear odontocomplex structure and lack of enamel, cancellous bone and hard-tissue resorption) shared with traditionally recognized chondrichthyans (euchondrichthyans, e.g., ctenacanthiforms). The mongolepid dermal skeleton exhibits a rare type of atubular dentine (lamellin) that is regarded as one of the diagnostic features of the Order within crown gnathostomes. The previously erected Mongolepididae and Shiqianolepidae families are revised, differentiated by scale-base histology and expanded to include the genera Rongolepisand Xinjiangichthys, respectively. A newly described mongolepid species (Solinalepis levis gen. et sp. nov.) from the Ordovician of North America is treated as family incertae sedis, as it possesses a type of basal bone tissue (acellular and vascular) that has yet to be documented in other mongolepids. This study extends the stratigraphic and palaeogeographic range of Mongolepidida and adds further evidence for an early diversification of the Chondrichthyes in the Ordovician Period, 50 million years prior to the first recorded appearance of euchondrichthyan teeth in the Lower Devonian.

7.
Microsc Res Tech ; 74(5): 464-79, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20836082

RESUMO

Microstructural scanning electron microscope investigation was performed on sectioned and surface-etched isolated, prehensile teeth of the Late Triassic semionotiform species Sargodon tomicus and Pycnodontidae incertae sedis from the Late Cretaceous. The teeth of both taxa display a system of vascular canals penetrating the dentine and the overlying hypermineralized acrodin cap; small tubules are radiating at an angle to the long axis of the canals, interpreted as residual spaces left by odontoblast cell processes. This is the first detailed account of vascular acrodin encountered in a pycnodont species. New information is revealed also about Sargodon dental histology in the shape of mineralized remnants of the basal lamina at the acrodin-dentine junction. This implies that deposition of the acrodin organic matrix proceeded centrifugally by the cells of the inner dental epithelium, probably with minor collagen contribution from odontoblasts. This is contrary to the more typical centripetal formation (beneath the basal lamina) of the acrodin layer implied for the studied pycnodontid teeth. The rare occurrences of vascular acrodin within Actinopterygii, and the demonstrated differences in its histogenesis, do not suggest the usefulness of the tissue as systematic character but rather point to its adaptive significance. The superficial increase in the order of acrodin bundle orientation, observed in both species, is similarly regarded as convergently acquired mechanical adaptation. The observed uneven shape of crystallite rows and lesser degree of mineralization of the inner collariform ganoin, compared to its outer portion, is indicative of epithelial-ectomesenchymal interaction and qualifies the tissue as enameloid.


Assuntos
Cordados , Dente/ultraestrutura , Animais , Microscopia Eletrônica de Varredura
8.
Microsc Res Tech ; 73(7): 704-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19953663

RESUMO

The triple-layered enameloid organization of neoselachian teeth has proven to be a reliable systematic character of the group. This study uses scanning electron microscopy to investigate the orientation of the parallel enameloid bundles in the area of the serrated cutting edges in certain fossil elasmobranchs. The examined teeth come from two Upper Cretaceous Squalicorax species and the Upper Miocene carcharhiniforms Galeocerdo sp., Carcharhinus sp., and Hemipristis serra. The parallel bundles are revealed by surface etching, which removes the superficial shiny-layered enameloid. In the teeth of Squalicorax, the bundles around the cutting edge bend once, before they reach the serrations. The studied carcharhiniform species show a more complicated pattern with a change of parallel bundle course inside the serrations. H. serra teeth do not display the first bending of the bundles, whereas it was present in the other two carcharhiniforms. The course of the crystalline bundles in both Squalicorax species is not affected by the presence of the serrations, regardless of the twofold difference in tooth size between them. In the carcharhiniform species, the bended bundles occur within the primary and secondary serrations and are always associated with them. This feature might have functional significance by strengthening the cutting edge or could simply develop as a consequence of the enameloid mineralization around the individual serrae.


Assuntos
Esmalte Dentário/ultraestrutura , Fósseis , Tubarões , Dente/ultraestrutura , Animais , Corrosão Dentária , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...