Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Health Sci J ; 50(1): 94-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846475

RESUMO

The current study aimed to assess the possible endocrine disruptor effects on rat mammary tissue and reproductive organs during pregnancy and lactation when exposed to low doses of glyphosate and its combination with 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba. The study involved the exposure of pregnant Wistar rats to various regulatory-relevant doses of glyphosate, ranging from gestational day 6 until fine of the lactation period. Glyphosate doses corresponded to the European Union's glyphosate-acceptable daily intake (ADI; 0.5mg/kg bw/day) and no observed adverse effect level (NOAEL; 50mg/kg bw/day). The dose of the mixture of glyphosate, dicamba, and 2,4-D was at the European Union ADI for each herbicide namely 0.5, 0.002, and 0.3mg/kg bw/day, respectively. In the animals exposed to glyphosate NOAEL serum estradiol levels were increased compared to untreated animals, along with an upregulation of TNF-?, MMP-2, and MMP-9 as measured in mammary gland homogenates compared to non-treated animals. Moreover, in this group, a focally acute inflammatory infiltrate was observed in the mammary gland. Our study showed that short-term exposure to glyphosate at doses that are set as safe by regulators and thus without risk corroborated with a particular physiological state as gestation and lactation, can give rise to inflammatory changes in breast tissue in rats. These findings support the need for further evaluation of glyphosate and mixtures of glyphosate with other pesticides for public health protection, especially for those categories vulnerable to the potential endocrine disruptor properties of these pesticides such as pregnant women, newborns, and children.

2.
Environ Res ; 237(Pt 1): 116908, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597833

RESUMO

The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day), and the no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day), and to a mixture of glyphosate, dicamba and 2,4-D all at the EU ADI (0.5, 0.002 and 0.3 mg/kg bw/day) respectively. After weaning the dams were sacrificed and blood and organs were collected. The pups' health was assessed by measuring viability, gestational and anogenital indices. Perinatal exposure to GLY alone and the herbicide mixture resulted in anti-androgenic effects in male offspring. In dams, exposure to glyphosate resulted in kidney glomerular and tubular dysfunction as well as increased thyroid hormone levels in a dose-dependent manner. Furthermore, exposure to the herbicide mixture resulted in effects similar to those observed with glyphosate at the NOAEL, suggesting at least an additive effect of the herbicide mixture at doses individually considered safe for humans.

3.
Cells ; 9(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059493

RESUMO

Atherosclerosis and cardiovascular disease development is the outcome of intermediate processes where endothelial dysfunction and vascular inflammation are main protagonists. Cell-derived microvesicles (MVs), endothelial progenitor cells (EPCs), and circulating microRNAs (miRNAs) are known as biomarkers and potential regulators for atherosclerotic vascular disease, but their role in the complexity of the inflammatory process and in the mechanism of vascular restoration is far from clear. We aimed to evaluate the biological activity and functional role of MVs, in particular of the EPCs-derived MVs (MVEs), of healthy origins in reducing atherosclerotic vascular disease development. The experiments were performed on hamsters divided into the following groups: simultaneously hypertensive-hyperlipidemic (HH group) by combining two feeding conditions for 4 months; HH with retro-orbital sinus injection containing 1 × 105 MVs or MVEs from control hamsters, one dose per month for 4 months of HH diet, to prevent atherosclerosis (HH-MVs or HH-MVEs group); and controls (C group), age-matched normal healthy animals. We found that circulating MV and MVE transplantation of healthy origins significantly reduces atherosclerosis development via (1) the mitigation of dyslipidemia, hypertension, and circulating EPC/cytokine/chemokine levels and (2) the structural and functional remodeling of arterial and left ventricular walls. We also demonstrated that (1) circulating MVs contain miRNAs; this was demonstrated by validating MVs and MVEs as transporters of Ago2-miRNA, Stau1-miRNA, and Stau2-miRNA complexes and (2) MV and MVE administration significantly protect against atherosclerotic cardiovascular disease via transfer of miR-223, miR-21, miR-126, and miR-146a to circulating late EPCs. It should be mentioned that the favorable effects of MVEs were greater than those of MVs. Our findings suggest that allogenic MV and MVE administration of healthy origins could counteract HH diet-induced detrimental effects by biologically active miR-10a, miR-21, miR-126, and miR-146a transfer to circulating EPCs, mediating their vascular repair function in atherosclerosis processes.


Assuntos
Aterosclerose/prevenção & controle , Micropartículas Derivadas de Células/transplante , Células Progenitoras Endoteliais/metabolismo , Administração Intravenosa , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Aterosclerose/patologia , Pressão Sanguínea , Micropartículas Derivadas de Células/metabolismo , Quimiocinas/sangue , Quimiocinas/metabolismo , Cricetinae , Citocinas/sangue , Citocinas/metabolismo , Dieta Hiperlipídica , Células Progenitoras Endoteliais/citologia , Endotélio/anatomia & histologia , Endotélio/ultraestrutura , Frequência Cardíaca , Masculino , MicroRNAs/metabolismo , Transplante Homólogo , Triglicerídeos/sangue , Remodelação Ventricular
4.
J Physiol Sci ; 66(6): 463-476, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27053101

RESUMO

We characterized human amniotic fluid stem cells (AFSC) in senescent cultures (6 weeks) versus cryopreserved cells using whole-cell patch-clamp, immunophenotyping, and differential gene expression profiling for senescence genes. We evidenced five ion current components (outward rectifier, A-type, inward rectifier, and big conductance Ca2+-dependent K+ currents, fast voltage-dependent Na+ currents). Senescent AFSC showed reduced expression of CD90, CD44, CD133, over 500-fold increase of interferon gamma and telomerase reverse transcriptase genes, increased cycle-dependent kinase 4 inhibitors, p53-binding protein 1, and decreased calreticulin and CD44. HLA-ABC immune expression was similar, and HLA-DR expression very low in both cell types. A subset of cryopreserved AFSC featured large inward rectifier K+ currents, voltage-dependent Na+ currents, and neural progenitor markers evidenced by immunophenotyping and RT-PCR. In all AFSC, in both culture conditions, at patch rupture the outward currents were very low, and they increased progressively over several minutes upon cytoplasm dialysis with pipette solution.


Assuntos
Líquido Amniótico/citologia , Criopreservação , Regulação da Expressão Gênica/fisiologia , Células-Tronco/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Imunofenotipagem
5.
Biol Cell ; 108(8): 219-43, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26968123

RESUMO

BACKGROUND INFORMATION: Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. RESULTS: Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. CONCLUSIONS: With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. SIGNIFICANCE: Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis.


Assuntos
Aterosclerose , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Aterosclerose/terapia , Cricetinae , Modelos Animais de Doenças , Masculino , Mesocricetus
6.
Rom J Morphol Embryol ; 56(1): 107-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826494

RESUMO

The homeobox (Hox) genes encode transcription factors that are involved in the morphogenesis of body. Recent data showed that the HoxD transcription factors control the cardiovascular system development, by modulation of endothelial cell proliferation and differentiation. For our knowledge, the role of histone acetylation in expression of HoxD9 has not been studied to date; therefore, the aim of this study was to investigate the expression of HoxD9 in endothelial progenitor cells after treatment with valproic acid (VPA), a histone deacetylase inhibitor. Our results showed that VPA inhibits the histone deacetylases leaving chromatin in an acetylated state corresponding to a decondensate conformation. qRT-PCR and Western blot assays showed that the expression of HoxD9 in endothelial progenitor cells treated with VPA was increased at both gene and protein level, suggesting that acetylation regulates HoxD9 expression. Furthermore, flow cytometry analysis revealed that the expression of endothelial specific markers such as CD31, CD105, CD117 and VEGFR2 was decreased in the presence of acetylating agent, VPA. The capacity of endothelial progenitor cells to form vascular networks on Matrigel was also reduced in the presence of VPA. In conclusion, investigating the role of histone acetylation in the regulation of accessibility of transcription factors to genes involved in differentiation can contribute to understanding epigenetic mechanisms underlying the commitment of stem cells.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Neoplasias/metabolismo , Acetilação , Antígenos CD/metabolismo , Diferenciação Celular , Cromatina/química , Endoglina , Sangue Fetal/citologia , Citometria de Fluxo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Lectinas/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Superfície Celular/metabolismo , Espectrometria de Fluorescência , Ácido Valproico/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Biol Cell ; 107(6): 189-204, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25763472

RESUMO

BACKGROUND INFORMATION: Recent studies suggest that endothelial progenitor cells (EPCs) and platelets have an important role in repair following vascular injury. Although evidence suggest that platelets are essential in EPC attracting, homing and differentiation to the injury site; however, the platelet effects on EPC function in atherosclerosis have received less attention. In this context, we followed the consequences of circulating EPCs and platelet microparticles (PMPs) administration on platelet-EPC interaction in atherosclerosis and the involved mechanisms. The experiments were performed on Golden Syrian hamsters divided in five equal groups: control (C), hypertensive-hypercholesterolemic (HH), HH treated with EPCs (HH-EPCs) or PMPs (HH-PMPs) and HH treated with EPCs and PMPs (HH-EPCs-PMPs). RESULTS: Compared with C group, EPCs isolated from HH and HH-PMPs groups presented a reduction of endothelial nitric oxide synthase and vascular endothelial growth factor expressions and an increase in thrombospondin-1 expression and inflammatory molecule secretion: interleukin 8 (IL)-8, myeloperoxidase (MPO) and plasminogen activator inhibitor-1 (PAI-1). EPC administration had beneficial effects, the obtained results being similar with those from the C group, while the combination with PMPs did not improve the EPC influences. Static coincubation of EPCs from HH and HH-PMPs with analogous platelets resulted in an increased EPC adhesion/migration, and IL-8, monocyte chemotactic protein-1, regulated on activation, normal T expressed and secreted, MPO and PAI-1 release, explained by the platelet hyperaggregability induced by pronounced distribution of vasodilator-stimulated phosphoprotein and filamentous actin, and the secretion of proinflammatory factors: IL-1ß, -6, -8, CD40 ligand. EPC therapy alone revealed an impaired platelet-EPC interaction directly correlated with the reduction of inflammatory markers and platelet aggregability. Moreover, in a dynamic flow system, EPCs and platelets from HH and HH-PMPs exhibited weakened interplay abilities, while EPC transplantation reinforces them. CONCLUSIONS: The present study demonstrates that HH animals revealed functional impairment of EPCs and platelets, which correlate with their reduced contribution to re-endothelialisation at the injury site, although in vitro exposure to immobilised platelets promotes their adhesion and migration. EPC administration alone recovers EPC/platelet functions and consolidates their interaction under dynamic flow conditions. These findings disclose new advances in understanding the platelet-EPC interaction and its role in the vascular repair.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Animais , Ligante de CD40/metabolismo , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Quimiocina CCL2/metabolismo , Cricetinae , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-8/metabolismo , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peroxidase/metabolismo , Fosfoproteínas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
In Vitro Cell Dev Biol Anim ; 50(10): 937-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25124869

RESUMO

Mesenchymal stem cells isolated from Wharton's Jelly have demonstrated an excellent differentiation potential into the endothelial lineage. We hypothesize that endothelial progenitor cells differentiated from Wharton's Jelly-derived mesenchymal stem cells have the potential to repopulate a decellularized vascular bed employed as a biological scaffold. For this purpose, we aimed at investigating the behavior of the endothelial progenitor cells in the decellularized matrix and their potential to repopulate decellularized human vascular tissue. Our main objectives were to differentiate Wharton's Jelly-derived mesenchymal stem cells into endothelial progenitor cells and to obtain a human vascular tissue slice experimental model using the umbilical cord arteries. We employed a decellularization method using enzymatic treatment of the umbilical cord arteries and a recellularization method with the endothelial progenitor cells differentiated from Wharton's Jelly mesenchymal cells in a co-culture system, in order to investigate our hypothesis. The cellular integration within the biological scaffold was determined by using flow cytometry analysis and confirmed by visualization of histological staining as well as fluorescence microscopy. The morphological observations of the recellularized scaffolds revealed the presence of endothelial progenitor cells within the decellularized tissue slices, displaying no degradation of the scaffold's extracellular matrix. The flow cytometry analysis revealed the presence of Wharton's Jelly-derived endothelial progenitor cells population in the decellularized fetal blood vessel scaffold after recellularization. In conclusion, our results have shown that an in vitro human vascular tissue slice experimental model using decellularized human fetal arteries is able to sustain an adequate scaffold for cellular implants.


Assuntos
Vasos Sanguíneos/citologia , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/genética , Linhagem da Célula , Feto , Citometria de Fluxo , Humanos , Cordão Umbilical/citologia
9.
Int J Pharm ; 463(2): 146-54, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23994366

RESUMO

The aims of this study were the development, characterization and bioevaluation of a novel biocompatible, resorbable and bio-active wound dressing prototype, based on anionic polymers (sodium alginate--AlgNa, carboximethylcellulose--CMC) and magnetic nanoparticles loaded with usnic acid (Fe3O4@UA). The antimicrobial activity was tested against Staphylococcus aureus grown in biofilms. The biocompatibility testing model included an endothelial cell line from human umbilical vein and human foetal progenitor cells derived from the amniotic fluid, that express a wide spectrum of surface molecules involved in different vascular functions and inflammatory response, and may be used as skin regenerative support. The obtained results demonstrated that CMC/Fe3O4@UA and AlgNa/Fe3O4@UA are exhibiting structural and functional properties that recommend them for further applications in the biomedical field. They could be used alone or coated with different bio-active compounds, such as Fe3O4@UA, for the development of novel, multifunctional porous materials used in tissues regeneration, as antimicrobial substances releasing devices, providing also a mechanical support for the eukaryotic cells adhesion, and exhibiting the advantage of low cytotoxicity on human progenitor cells. The great antimicrobial properties exhibited by the newly synthesized nano-bioactive coatings are recommending them as successful candidates for improving the implanted devices surfaces used in regenerative medicine.


Assuntos
Alginatos/administração & dosagem , Anti-Infecciosos/administração & dosagem , Bandagens , Benzofuranos/administração & dosagem , Carboximetilcelulose Sódica/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Alginatos/química , Anti-Infecciosos/química , Benzofuranos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carboximetilcelulose Sódica/química , Linhagem Celular , Células Cultivadas , Células-Tronco Fetais/fisiologia , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Difração de Raios X
10.
PLoS One ; 8(1): e52058, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372649

RESUMO

AIM: The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs) and platelet microparticles (PMPs) on blood platelet function in experimental hypertension associated with hypercholesterolemia. METHODS: Golden Syrian hamsters were divided in six groups: (i) control, C; (ii) hypertensive-hypercholesterolemic, HH; (iii) 'prevention', HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv) 'regression', HHfin-EPCs, HH treated with EPCs after HH feeding; (v) HH treated with PMPs, HH-PMPs, and (vi) HH treated with EPCs and PMPs, HH-EPCs-PMPs. RESULTS: Compared to HH group, the platelets from HHin-EPCs and HHfin-EPCs groups showed a reduction of: (i) activation, reflected by decreased integrin 3ß, FAK, PI3K, src protein expression; (ii) secreted molecules as: SDF-1, MCP-1, RANTES, VEGF, PF4, PDGF and (iii) expression of pro-inflammatory molecules as: SDF-1, MCP-1, RANTES, IL-6, IL-1ß; TFPI secretion was increased. Compared to HH group, platelets of HH-PMPs group showed increased activation, molecules release and proteins expression. Compared to HH-PMPs group the combination EPCs with PMPs treatment induced a decrease of all investigated platelet molecules, however not comparable with that recorded when EPC individual treatment was applied. CONCLUSION: EPCs have the ability to reduce platelet activation and to modulate their pro-inflammatory and anti-thrombogenic properties in hypertension associated with hypercholesterolemia. Although, PMPs have several beneficial effects in combination with EPCs, these did not improve the EPC effects. These findings reveal a new biological role of circulating EPCs in platelet function regulation, and may contribute to understand their cross talk, and the mechanisms of atherosclerosis.


Assuntos
Aterosclerose/patologia , Plaquetas/patologia , Micropartículas Derivadas de Células/patologia , Células Endoteliais/patologia , Hipercolesterolemia/patologia , Hipertensão/patologia , Células-Tronco/patologia , Animais , Aterosclerose/complicações , Aterosclerose/genética , Aterosclerose/metabolismo , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL12 , Cricetinae , Células Endoteliais/metabolismo , Expressão Gênica , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mesocricetus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ativação Plaquetária , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 13(11): 15074-85, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203112

RESUMO

To test the involvement of histone deacetylases (HDACs) activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs) derived from umbilical cord blood (UCB). Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR(2)) revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA), Trichostatin A (TSA), and Valproic acid (VPA). RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR(2), CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases)/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Sangue Fetal/citologia , Inibidores de Histona Desacetilases/farmacologia , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Telomerase/metabolismo
12.
Cell Physiol Biochem ; 28(1): 63-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865849

RESUMO

Wharton's jelly (WJ) is a rich source of multiple-lineage differentiating cells, recently proposed for cell replacement therapy. However, their ability to integrate into the cardiac tissue has not been elucidated, yet. We employed in vitro cardiac transplantation models to investigate the capacity of a novel population of human WJ-derived mesenchymal stem cells (nMSCs) to integrate into both living and ischemic cardiac tissue. NMSCs were characterized for the expression of stem/progenitor cell genes and proteins, as well as for multi-lineage differentiation potential. To assess their integration properties, nMSCs were cocultured with either living or ischemic embryonic murine ventricular slices. Immunohistochemical analyses were performed on cryosections of cocultured preparations to allow human cells tracking within the cocultures. Results showed that nMSCs shared MSC and endothelial colony-forming cell characteristics at gene, protein, and functional levels. NMSCs were markedly chemoattracted towards the ventricular slices, integrating robustly into the depth of both living and ischemic cardiac tissue. In conclusion, the functional ability of WJ-derived cells to populate the cardiac tissue could be validated in vitro. The transplantation models described could be further used to depict the mechanisms of WJ-derived cells integration into the cardiac tissue, contributing to optimization of reliable cell therapies for cardiac repair.


Assuntos
Ventrículos do Coração/citologia , Células-Tronco Mesenquimais/citologia , Geleia de Wharton/citologia , Animais , Antígenos de Superfície/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Citometria de Fluxo , Ventrículos do Coração/patologia , Humanos , Imuno-Histoquímica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos
13.
J Cell Mol Med ; 15(9): 1914-26, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21029374

RESUMO

The umbilical cord blood derived endothelial progenitor cells (EPCs) contribute to vascular regeneration in experimental models of ischaemia. However, their ability to participate in cardiovascular tissue restoration has not been elucidated yet. We employed a novel coculture system to investigate whether human EPCs have the capacity to integrate into living and ischaemic cardiac tissue, and participate to neovascularization. EPCs were cocultured with either living or ischaemic murine embryonic ventricular slices, in the presence or absence of a pro-angiogenic growth factor cocktail consisting of VEGF, IGF-1, EGF and bFGF. Tracking of EPCs within the cocultures was performed by cell transfection with green fluorescent protein or by immunostaining performed with anti-human vWF, CD31, nuclei and mitochondria antibodies. EPCs generated vascular tube-like structures in direct contact with the living ventricular slices. Furthermore, the pro-angiogenic growth factor cocktail reduced significantly tubes formation. Coculture of EPCs with the living ventricular slices in a transwell system did not lead to vascular tube-like structures formation, demonstrating that the direct contact is necessary and that the soluble factors secreted by the living slices were not sufficient for their induction. No vascular tubes were formed when EPCs were cocultured with ischaemic ventricular slices, even in the presence of the pro-angiogenic cocktail. In conclusion, EPCs form vascular tube-like structures in contact with living cardiac tissue and the direct cell-to-cell interaction is a prerequisite for their induction. Understanding the cardiac niche and micro-environmental interactions that regulate EPCs integration and neovascularization are essential for applying these cells to cardiovascular regeneration.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Comunicação Celular , Células Endoteliais/citologia , Sangue Fetal/citologia , Coração/fisiologia , Neovascularização Fisiológica , Células-Tronco/citologia , Animais , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Sobrevivência de Tecidos , Transfecção , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...