Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 294(4): 901-917, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30923942

RESUMO

The Pr1 family of serine endopeptidases plays an important role in pathogenicity and virulence of entomopathogens such as Metarhizium anisopliae (Ascomycota: Hypocreales). These virulence factors allow for the penetration of the host cuticle, a vital step in the infective process of this fungus, which possesses 11 Pr1 isoforms (Pr1A through Pr1K). The family is divided into two classes with Class II (proteinase K-like) comprising 10 isoforms further split into three subfamilies. It is believed that these isoforms act synergistically and with other virulence factors, allowing pathogenicity to multiple hosts. As virulence coevolves through reciprocal selection with hosts, positive selection may lead to the evolution of new protease families or isoforms of extant ones that can withstand host defenses. This work tests this hypothesis in Class II Pr1 proteins, focusing on M. anisopliae, employing different methods for phylogenetic inference in amino acid and nucleotide datasets in multiple arrangements for Metarhizium spp. and related species. Phylogenies depict groups that match the taxonomy of their respective organisms with high statistical support, with minor discrepancies. Positively selected sites were identified in six out of ten Pr1 isoforms, most of them located in the proteolytic domain and spatially close to the catalytic residues. Moreover, there was evidence of functional divergence in the majority of pairwise comparisons. These results imply the existence of differential selective pressure acting on Pr1 proteins and a potential new isoform, likely affecting host specificities, virulence, or even adapting the organism to different host-independent lifestyles.


Assuntos
Metarhizium/classificação , Metarhizium/patogenicidade , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sítios de Ligação , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Metarhizium/enzimologia , Família Multigênica , Filogenia , Domínios Proteicos , Seleção Genética , Fatores de Virulência/química , Fatores de Virulência/genética
2.
Genet Mol Biol ; 41(4): 843-857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534852

RESUMO

Cell walls are involved in manifold aspects of fungi maintenance. For several fungi, chitin synthesis, degradation and recycling are essential processes required for cell wall biogenesis; notably, the activity of ß-N-acetylglucosaminidases (NAGases) must be present for chitin utilization. For entomopathogenic fungi, such as Metarhizium anisopliae, chitin degradation is also used to breach the host cuticle during infection. In view of the putative role of NAGases as virulence factors, this study explored the transcriptional profile and evolution of putative GH20 NAGases (MaNAG1 and MaNAG2) and GH3 NAGases (MaNAG3 and MaNAG4) identified in M. anisopliae. While MaNAG2 orthologs are conserved in several ascomycetes, MaNAG1 clusters only with Aspergilllus sp. and entomopathogenic fungal species. By contrast, MaNAG3 and MaNAG4 were phylogenetically related with bacterial GH3 NAGases. The transcriptional profiles of M. anisopliae NAGase genes were evaluated in seven culture conditions showing no common regulatory patterns, suggesting that these enzymes may have specific roles during the Metarhizium life cycle. Moreover, the expression of MaNAG3 and MaNAG4 regulated by chitinous substrates is the first evidence of the involvement of putative GH3 NAGases in physiological cell processes in entomopathogens, indicating their potential influence on cell differentiation during the M. anisopliae life cycle.

3.
BMC Genomics ; 17(Suppl 8): 736, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27801295

RESUMO

BACKGROUND: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). RESULTS: Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. CONCLUSIONS: Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.


Assuntos
Genoma Fúngico , Genômica , Metarhizium/genética , Metarhizium/metabolismo , Metabolismo Secundário/genética , Transcriptoma , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genômica/métodos , Interações Hospedeiro-Patógeno , Metarhizium/classificação , Filogenia , Característica Quantitativa Herdável , Carrapatos/microbiologia
4.
BMC Genomics ; 15: 822, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25263348

RESUMO

BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animais , Hibridização Genômica Comparativa , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Metarhizium/classificação , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiologia , Análise de Sequência de RNA
5.
Naturwissenschaften ; 100(5): 459-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23619940

RESUMO

Ureases are nickel-dependent enzymes which catalyze the hydrolysis of urea to ammonia and carbamate. Despite the apparent wealth of data on ureases, many crucial aspects regarding these enzymes are still unknown, or constitute matter for ongoing debates. One of these is most certainly their structural organization: ureases from plants and fungi have a single unit, while bacterial and archaean ones have three-chained structures. However, the primitive state of these proteins--single- or three-chained--is yet unknown, despite many efforts in the field. Through phylogenetic inference using three different datasets and two different algorithms, we were able to observe chain number transitions displayed in a 3-to-1 fashion. Our results imply that the ancestral state for ureases is the three-chained organization, with single-chained ureases deriving from them. The two-chained variants are not evolutionary intermediates. A fusion process, different from those already studied, may explain this structural transition.


Assuntos
Modelos Moleculares , Urease/química , Archaea/classificação , Archaea/enzimologia , Bactérias/classificação , Bactérias/enzimologia , Fungos/classificação , Fungos/enzimologia , Filogenia , Plantas/classificação , Plantas/enzimologia , Estrutura Terciária de Proteína , Urease/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...