Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347012

RESUMO

QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.

2.
Sci Rep ; 12(1): 10676, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739212

RESUMO

Studying faults capable of releasing moderate-to-strong earthquakes is fundamental for seismic hazard studies, especially in a territory that was subject to the strongest peninsular Italy earthquake (1857, Mw 7.1) and hosting the largest European oil field on-land. Fieldwork-based observations in the Campania-Lucania area highlight a SSW-dipping ~ 65 km-long normal-oblique-segmented fault, showing evidence of recent activity and possibly responsible for the 1857 earthquake. It crosses the Maddalena ridge, linking separate Quaternary basins. Two seismic reflection profiles cross the fault trace where it is buried beneath the Val d'Agri Quaternary deposits. Similarities between fault-controlled small basins in the highest portion of the massifs in the study area and the neighboring 1980 Irpinia area (1980 earthquake, Mw 6.9) are interpreted as evidence of trans-ridge fault activity. Kinematic analyses and the stress field inversion provide a N032-trending near-horizontal s3-axis, the same computed in literature for the Irpinia area, highlighting a deviation from the ~N045-axis which characterizes most of the Apennines. This study demonstrates how detailed fieldwork, supported by geophysics and innovative data analysis techniques, can unravel unknown faults while giving a novel interpretation of the trans-ridge faults' style in controlling strong earthquakes, moving away from classical interpretations, and providing a helpful approach in similar contexts worldwide.

3.
Sci Data ; 9(1): 204, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551216

RESUMO

We present QUIN, a "QUaternary fault strain INdicators database", designed to integrate and unify published and unpublished local-scale geological information and derive strain parameters for structural and seismotectonic analyses. It provides data on 3339 Fault Striation Pairs (FSP; fault plane and slickenline), distributed within 455 survey sites. These are exposed along the intra-Apennine Quaternary extensional faults of Central Italy. The area covers an extent of ~550 km in a NW-SE direction. We give information on FSP location, attitude and kinematics, and deformation axes. We also provide an original shapefile of the faults hosting the FSP. A large amount of homogeneously distributed Quaternary fault/slip data help to clarify and implement the contemporary geometric and kinematic deformation pattern of Central Italy that appears scattered and incomplete whenever exclusively derived from earthquake data. The high-density of structural data can help investigate stress pattern heterogeneities at local scales, with relevance for new generations of hazard assessment evaluation and a better understanding of rupture propagation and related barriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...