Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Phys Med Biol ; 65(9): 095011, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182598

RESUMO

The IAEA is currently coordinating a multi-year project to update the TRS-398 Code of Practice for the dosimetry of external beam radiotherapy based on standards of absorbed dose to water. One major aspect of the project is the determination of new beam quality correction factors, k Q , for megavoltage photon beams consistent with developments in radiotherapy dosimetry and technology since the publication of TRS-398 in 2000. Specifically, all values must be based on, or consistent with, the key data of ICRU Report 90. Data sets obtained from Monte Carlo (MC) calculations by advanced users and measurements at primary standards laboratories have been compiled for 23 cylindrical ionization chamber types, consisting of 725 MC-calculated and 179 experimental data points. These have been used to derive consensus k Q values as a function of the beam quality index TPR20,10 with a combined standard uncertainty of 0.6%. Mean values of MC-derived chamber-specific [Formula: see text] factors for cylindrical and plane-parallel chamber types in 60Co beams have also been obtained with an estimated uncertainty of 0.4%.


Assuntos
Radioisótopos de Cobalto/análise , Método de Monte Carlo , Fótons/uso terapêutico , Radiometria/métodos , Radiometria/normas , Consenso , Humanos , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Incerteza
2.
Phys Med Biol ; 63(12): 125004, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726409

RESUMO

Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.


Assuntos
Braquiterapia/métodos , Dosímetros de Radiação/normas , Braquiterapia/instrumentação , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/normas , Dosagem Radioterapêutica , Neoplasias Cutâneas/radioterapia
3.
Phys Med Biol ; 60(10): 3959-73, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25909660

RESUMO

The measurement of output factors (OF) for the small photon beams generated by Leksell Gamma Knife® (LGK) radiotherapy units is a challenge for the physicist due to the under or over estimation of these factors by a vast majority of the detectors commercially available. Output correction factors, introduced in the international formalism published by Alfonso (2008 Med. Phys. 35 5179-86), standardize the determination of OFs for small photon beams by correcting detector-reading ratios to yield OFs in terms of absorbed-dose ratios. In this work output correction factors for a number of detectors have been determined for LGK Perfexion™ (60)Co γ-ray beams by Monte Carlo (MC) calculations and measurements. The calculations were made with the MC system PENELOPE, scoring the energy deposited in the active volume of the detectors and in a small volume of water; the detectors simulated were two silicon diodes, one liquid ionization chamber (LIC), alanine and TLD. The calculated LIC output correction factors were within ± 0.4%, and this was selected as the reference detector for experimental determinations where output correction factors for twelve detectors were measured, normalizing their readings to those of the LIC. The MC-calculated and measured output correction factors for silicon diodes yielded corrections of up to 5% for the smallest LGK collimator size of 4 mm diameter. The air ionization chamber measurements led to extremely large output correction factors, caused by the well-known effect of partial volume averaging. The corrections were up to 7% for the natural diamond detector in the 4 mm collimator, also due to partial volume averaging, and decreased to within about ± 0.6% for the smaller synthetic diamond detector. The LIC, showing the smallest corrections, was used to investigate machine-to-machine output factor differences by performing measurements in four LGK units with different dose rates. These resulted in OFs within ± 0.6% and ± 0.2% for the 4 mm and 8 mm collimators, respectively, providing evidence for the use of generic OFs for these LGK beams. Using the experimentally derived output correction factors, OFs can be measured using a wide range of commercially available detectors.


Assuntos
Algoritmos , Fótons/uso terapêutico , Monitoramento de Radiação/instrumentação , Radiocirurgia/instrumentação , Método de Monte Carlo , Doses de Radiação , Monitoramento de Radiação/métodos , Radiocirurgia/métodos
4.
Phys Med Biol ; 58(10): 3481-99, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23629423

RESUMO

The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.


Assuntos
Calorimetria , Grafite , Método de Monte Carlo , Fenômenos Físicos , Prótons , Imagens de Fantasmas , Água
5.
Phys Med Biol ; 58(8): 2509-22, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23514896

RESUMO

This paper uses Monte Carlo simulations to calculate the Spencer-Attix water/medium stopping-power ratios (sw, med) for the dosimetry of scanned proton pencil beams. It includes proton energies from 30 to 350 MeV and typical detection materials such as air (ionization chambers), radiochromic film, gadolinium oxysulfide (scintillating screens), silicon and lithium fluoride. Track-ends and particles heavier than protons were found to have a negligible effect on the water/air stopping-power ratios (sw, air), whereas the mean excitation energy values were found to carry the largest source of uncertainty. The initial energy spread of the beam was found to have a minor influence on the sw, air values in depth. The water/medium stopping-power ratios as a function of depth in water were found to be quite constant for air and radiochromic film-within 2.5%. Also, the sw, med values were found to have no clinically relevant dependence on the radial distance-except for the case of gadolinium oxysulfide and proton radiography beams. In conclusion, the most suitable detection materials for depth-dose measurements in water were found to be air and radiochromic film active layer, although a small correction is still needed to compensate for the different sw, med values between the plateau and the Bragg peak region. Also, all the detection materials studied in this work-except for gadolinium oxysulfide-were found to be suitable for lateral dose profiles and field-specific dose distribution measurements in water.


Assuntos
Terapia com Prótons , Radiometria/métodos , Água , Ar , Dosagem Radioterapêutica
6.
Med Phys ; 39(7Part3): 4633, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516682

RESUMO

The increased use of small photon fields in stereotactic and intensity-modulated radiotherapy has raised the need for standardizing the dosimetry of such fields using procedures consistent with those for conventional radiotherapy. An international working group, established by the IAEA in collaboration with AAPM and IPEM, is finalising a Code of Practice for the dosimetry of small static photon fields. Procedures for reference dosimetry in nonstandard machine specific reference (msr) fields are provided following the formalism of Alfonso et al. (Med. Phys. 35: 5179; 2008). Reference dosimetry using ionization chambers in machines that cannot establish a conventional 10 cm × 10 cm reference field is based on either a direct calibration in the msr field traceable to primary standards, a calibration in a reference field and a generic correction factor or the product of a correction factor for a virtual reference field and a correction factor for the difference between the msr and virtual fields. For the latter method, procedures are provided for determining the beam quality in non-reference conditions. For the measurement of field output factors in small fields, procedures for connecting large field measurements using ionization chambers to small field measurements using high-resolution detectors such as diodes, diamond, liquid ion chambers, organic scintillators and radiochromic film are given. The Code of Practice also presents consensus data on correction factors for use in conjunction with measured, detector-specific output factors. Further research to determine missing data according to the proposed framework will be strongly encouraged by publication of this document.

7.
Radiat Prot Dosimetry ; 143(2-4): 481-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21138926

RESUMO

When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of 'isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It is the product of the total absorbed dose (in gray) used and a weighting factor W(IsoE) (dimensionless): D(IsoE)=D×W(IsoE). In fractionated photon-beam therapy, the dose per fraction and the overall treatment time (in days) are the two main parameters that the radiation oncologist has the freedom to adjust. The weighting factor for an alteration of the dose per fraction is commonly evaluated using the linear-quadratic (α/ß) model. For therapy with protons and heavier ions, radiation quality has to be taken into account. A 'generic proton RBE' of 1.1 for clinical applications is recommended in a joint ICRU-IAEA Report [ICRU (International Commission on Radiation Units and Measurements) and IAEA (International Atomic Energy Agency). Prescribing, recording and reporting proton-beam therapy. ICRU Report 78, jointly with the IAEA, JICRU, 7(2) Oxford University Press (2007)]. For heavier ions (e.g. carbon ions), the situation is more complex as the RBE values vary markedly with particle type, energy and depth in tissue.


Assuntos
Carga Corporal (Radioterapia) , Radioterapia com Íons Pesados , Radioterapia Conformacional/métodos , Eficiência Biológica Relativa , Fracionamento da Dose de Radiação , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica
8.
Med Phys ; 35(11): 5179-86, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19070252

RESUMO

The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.


Assuntos
Radiometria/normas , Humanos , Agências Internacionais/normas , Padrões de Referência
10.
Phys Med Biol ; 51(14): 3533-48, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16825747

RESUMO

The stability of the electron transport algorithm implemented in the Monte Carlo code PENELOPE with respect to variations of its step length is analysed in the context of the simulation of ion chambers used in photon and electron dosimetry. More precisely, the degree of violation of the Fano theorem is quantified (to the 0.1% level) as a function of the simulation parameters that determine the step size. To meet the premises of the theorem, we define an infinite graphite phantom with a cavity delimited by two parallel planes (i.e., a slab) and filled with a 'gas' that has the same composition as graphite but a mass density a thousand-fold smaller. The cavity walls and the gas have identical cross sections, including the density effect associated with inelastic collisions. Electrons with initial kinetic energies equal to 0.01, 0.1, 1, 10 or 20 MeV are generated in the wall and in the gas with a uniform intensity per unit mass. Two configurations, motivated by the design of pancake- and thimble-type chambers, are considered, namely, with the initial direction of emission perpendicular or parallel to the gas-wall interface. This version of the Fano test avoids the need of photon regeneration and the calculation of photon energy absorption coefficients, two ingredients that are common to some alternative definitions of equivalent tests. In order to reduce the number of variables in the analysis, a global new simulation parameter, called the speedup parameter (a), is introduced. It is shown that setting a = 0.2, corresponding to values of the usual PENELOPE parameters of C1 = C2 = 0.02 and values of WCC and WCR that depend on the initial and absorption energies, is appropriate for maximum tolerances of the order of 0.2% with respect to an analogue, i.e., interaction-by-interaction, simulation of the same problem. The precise values of WCC and WCR do not seem to be critical to achieve this level of accuracy. The step-size dependence of the absorbed dose is explained in the light of the properties of PENELOPE's transport mechanics. This work is intended to help users to adopt an optimal configuration that guarantees both a high-accuracy calculation of the absorbed dose and a reasonably short computing time.


Assuntos
Radioterapia de Alta Energia/métodos , Software , Algoritmos , Simulação por Computador , Transporte de Elétrons , Elétrons , Humanos , Íons , Cinética , Aceleradores de Partículas , Fótons , Probabilidade , Radiometria/instrumentação
11.
Phys Med Biol ; 51(9): 2279-92, 2006 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-16625042

RESUMO

Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, s(water,air), of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u.


Assuntos
Radioisótopos de Carbono/análise , Íons/análise , Modelos Biológicos , Radiometria/métodos , Software , Simulação por Computador , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Água/química
12.
Radiat Prot Dosimetry ; 122(1-4): 463-70, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17229786

RESUMO

This paper summarises the conclusions of a working group established jointly by the International Atomic Energy Agency (IAEA) and the International Commission on Radiation Units and Measurements (ICRU) to address some of the relative biological effectiveness (RBE) issues encountered in ion-beam therapy. Special emphasis is put on the selection and definition of the involved quantities and units. The isoeffective dose, as introduced here for radiation therapy applications, is the dose that delivered under reference conditions would produce the same clinical effects as the actual treatment in a given system, all other conditions being identical. It is expressed in Gy. The reference treatment conditions are: photon irradiation, 2 Gy per fraction, 5 daily fractions a week. The isoeffective dose D(IsoE) is the product of the physical quantity absorbed dose D and a weighting factor W(IsoE). W(IsoE) is an inclusive weighting factor that takes into account all factors that could influence the clinical effects like dose per fraction, overall time, radiation quality (RQ), biological system and effects. The numerical value of W(IsoE) is selected by the radiation-oncology team for a given patient (or treatment protocol). It is part of the treatment prescription. Evaluation of the influence of RQ on W(IsoE) raises complex problems because of the clinically significant RBE variations with biological effect (late vs. early) and position in depth in the tissues which is a problem specific to ion-beam therapy. Comparison of the isoeffective dose with the equivalent dose frequently used in proton- and ion-beam therapy is discussed.


Assuntos
Radioterapia com Íons Pesados , Guias de Prática Clínica como Assunto , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Eficiência Biológica Relativa , Dosagem Radioterapêutica , Padrões de Referência
13.
Phys Med Biol ; 48(14): 2081-99, 2003 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12894972

RESUMO

Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.


Assuntos
Algoritmos , Radiometria/instrumentação , Radiometria/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Método de Monte Carlo , Fótons/uso terapêutico , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Phys Med Biol ; 48(10): 1263-75, 2003 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12812445

RESUMO

In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor phi(water)plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water and Solid water (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with phi(water)plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of phi(water)plastic may then be explained considering the different depth-scaling rules used.


Assuntos
Elétrons/uso terapêutico , Imagens de Fantasmas/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Fenômenos Biofísicos , Biofísica , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Plásticos , Radioterapia de Alta Energia/estatística & dados numéricos , Água
15.
Radiat Prot Dosimetry ; 102(2): 101-13, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12408486

RESUMO

An international collaborative study of cancer risk among workers in the nuclear industry is tinder way to estimate direetly the cancer risk following protracted low-dose exposure to ionising radiation. An essential aspect of this study is the characterisation and quantification of errors in available dose estimates. One major source of errors is dosemeter response in workplace exposure conditions. Little information is available on energy and geometry response for most of the 124 different dosemeters used historically in participating facilities. Experiments were therefore set up to assess this. using 10 dosemeter types representative of those used over time. Results show that the largest errors were associated with the response of early dosemeters to low-energy photon radiation. Good response was found with modern dosemeters. even at low energy. These results are being used to estimate errors in the response for each dosemeter type, used in the participating facilities, so that these can be taken into account in the estimates of cancer risk.


Assuntos
Exposição Ambiental , Radiometria/métodos , Calibragem , Simulação por Computador , Humanos , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes
16.
Phys Med Biol ; 47(14): 2397-409, 2002 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12171330

RESUMO

Photon quality correction factors (kQy) for ionization chamber photon dosimetry in an epithermal neutron beam were determined according to a modified absorbed dose to water formalism which was extended to mixed radiation fields. We have studied two commercially available ionization chambers in the epithermal neutron beam optimized for BNCT at the facility at Studsvik, Sweden. One of the chambers is nominally neutron insensitive; a magnesium-walled detector flushed with pure argon gas (denoted by Mg/Ar). The second chamber has approximately the same sensitivity for neutrons and photons; it is considered a 'tissue equivalent' detector, with A-150 walls flushed with methane-based tissue-equivalent gas (denoted by TE/TE). The kQy-factors in epithermal neutron beams have previously been assumed to be equal to unity or estimated from measurements in clinical accelerator produced photon beams. In this work the kQy-factors have been determined from absorbed dose calculations using cavity theory together with Monte Carlo derived electron fluences obtained with the MCNP4c system for water and PMMA phantoms. The calculated quality correction factors differ substantially from unity, being in the order of 10% for the Mg/Ar detector at shallow phantom depths, and between 2 and 4% for other depths and for the TE/TE chamber.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Terapia por Captura de Nêutron de Boro/métodos , Modelos Biológicos , Nêutrons , Fótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Elétrons , Análise de Falha de Equipamento/métodos , Humanos , Método de Monte Carlo , Controle de Qualidade , Radiação Ionizante , Radiometria/instrumentação
17.
Med Phys ; 28(10): 2077-87, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11695769

RESUMO

A comparison of the determination of absorbed dose to water in reference conditions with high-energy electron beams (Enominal of 6, 8, 10, 12, 15, and 18 MeV) following the recommendations given in the AAPM TG-51 and in the original TG-21 dosimetry protocols has been made. Six different ionization chamber types have been used, two Farmer-type cylindrical (PTW 30001, PMMA wall; NE 2571, graphite wall) and four plane parallel (PTW Markus, and Scanditronix-Wellhöfer NACP, PPC-05 and Roos PPC-40). Depending upon the cylindrical chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 1%-3%. Approximately 1% of this difference is due to the differences in the data given in the two protocols; another 1.1%-1.2% difference is due to the change of standards, from air-kerma to absorbed dose to water. For plane-parallel chambers, absorbed doses were determined by using two chamber calibration methods: (i) direct use of the ADCL calibration factors N(60Co)D,w and Nx for each chamber type in the appropriate equations for dose determination recommended by each protocol, and (ii) cross-calibration techniques in a high-energy electron beam, as recommended by TG-21, TG-39, and TG-51. Depending upon the plane-parallel chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 0.7%-2.9% for the direct calibration procedures and by 0.8%-3.2% for the cross-calibration techniques. Measured values of photon-electron conversion kecal, for the NACP and Markus chambers were found to be 0.3% higher and 1.7% lower than the corresponding values given in TG-51. For the PPC-05 and PPC-40 (Roos) chamber types, the values of kecal were measured to be 0.889 and 0.893, respectively. The uncertainty for the entire calibration chain, starting from the calibration of the ionization chamber in the standards laboratory to the determination of absorbed dose to water in the user beam, has been analyzed for the two formalisms. For cylindrical chambers, the observed differences between the two protocols are within the estimated combined uncertainty of the ratios of absorbed doses for 6 and 8 MeV; however, at higher energies (10< or =E< or =18 MeV), the differences are larger than the estimated combined uncertainties by about 1%. For plane-parallel chambers, the observed differences are within the estimated combined uncertainties for the direct calibration technique; for the cross-calibration technique the differences are within the uncertainty estimates at low energies whereas they are comparable to the uncertainty estimates at higher energies. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors, and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration.


Assuntos
Elétrons , Radiometria/métodos , Radiometria/normas , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Fenômenos Biofísicos , Biofísica , Protocolos Clínicos , Humanos , Modelos Estatísticos , Radioterapia de Alta Energia/normas , Água
18.
Phys Med Biol ; 46(11): 2985-3006, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11720359

RESUMO

The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct N(D,w) calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct N(D,w) calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors p(wall) and p(dis) of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.


Assuntos
Elétrons , Fótons , Radiometria/métodos , Radiometria/normas , Radioterapia de Alta Energia/instrumentação , Ar , Fenômenos Biofísicos , Biofísica , Calibragem , Protocolos Clínicos , Radioterapia de Alta Energia/normas , Água/química
19.
Strahlenther Onkol ; 177(2): 59-73, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11233837

RESUMO

BACKGROUND: Registration of computed tomography (CT) and magnetic resonance (MR) images are commonly performed to define the different target regions used in radiotherapy treatment planning (RTTP). The accuracy of target definition will then depend on the spatial accuracy of the CT and MR data, and on the technique used to register the images. CT images are usually regarded as geometrically correct, while MR images are known to suffer from geometric distortion. The aim of this paper is to discuss the possible impact of MR image distortions in the radiotherapy treatment planning process. METHODS: The origin, magnitude, and relative impact of the different sources of geometric distortions that affect the MR image data at different magnetic fields and for different acquisition settings are described. Techniques for distortion correction are reviewed, and their limitations are outlined. The sensitivity of image registration techniques to the presence of geometric distortions in the MR data is discussed. Finally, an overview of image registration techniques used and results obtained in clinical radiotherapy treatment planning applications is given. RESULTS: Spatial distortions in MR images vary with field strength and with the image acquisition protocol. The spatial accuracy generally decreases with distance from the magnet isocenter. Distortion correction techniques based on phantom evaluations cannot adequately model patient-induced distortions. CONCLUSION: Image protocols with high gradient bandwidths should be used to reduce the spatial distortions in MR images. Correction techniques based only on phantom measurements could be sufficient at low magnetic fields, while at higher fields additional corrections of patient-related distortions might be needed. Registration techniques based on matching of Landmark points located far from the magnet isocenter are especially prone to MR distortions.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Neoplasias Abdominais/radioterapia , Neoplasias Encefálicas/radioterapia , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Teóricos , Neoplasias Pélvicas/radioterapia , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada por Raios X/métodos
20.
Med Phys ; 28(1): 46-54, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11213922

RESUMO

Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) has recently developed a new protocol for the calibration of high-energy photon and electron beams used in radiation therapy. The formalism and the dosimetry procedures recommended in this protocol are based on the use of an ionization chamber calibrated in terms of absorbed dose-to-water in a standards laboratory's 60Co gamma ray beam. This is different from the recommendations given in the AAPM TG-21 protocol, which are based on an exposure calibration factor of an ionization chamber in a 60Co beam. The purpose of this work is to compare the determination of absorbed dose-to-water in reference conditions in high-energy photon beams following the recommendations given in the two dosimetry protocols. This is realized by performing calibrations of photon beams with nominal accelerating potential of 6, 18 and 25 MV, generated by an Elekta MLCi and SL25 series linear accelerator. Two widely used Farmer-type ionization chambers having different composition, PTW 30001 (PMMA wall) and NE 2571 (graphite wall), were used for this study. Ratios of AAPM TG-51 to AAPM TG-21 doses to water are found to be 1.008, 1.007 and 1.009 at 6, 18 and 25 MV, respectively when the PTW chamber is used. The corresponding results for the NE chamber are 1.009, 1.010 and 1.013. The uncertainties for the ratios of the absorbed dose determined by the two protocols are estimated to be about 1.5%. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration. The latter has been found to have a considerable influence on the differences in clinical dosimetry, even larger than the adoption of the new data and recommended procedures, as most intrinsic differences cancel out due to the adoption of the new formalism.


Assuntos
Fótons/uso terapêutico , Radiometria/normas , Radioterapia de Alta Energia/normas , Fenômenos Biofísicos , Biofísica , Protocolos Clínicos , Humanos , Radiometria/instrumentação , Radiometria/métodos , Sociedades Científicas , Estados Unidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...