Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 181(6): 945-57, 2008 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-18559668

RESUMO

Choline cytidylyltransferase (CCT) is the rate-limiting enzyme in the phosphatidylcholine biosynthetic pathway. Here, we demonstrate that CCT alpha-mediated phosphatidylcholine synthesis is required to maintain normal Golgi structure and function as well as cytokine secretion from the Golgi complex. CCT alpha is localized to the trans-Golgi region and its expression is increased in lipopolysaccharide (LPS)-stimulated wild-type macrophages. Although LPS triggers transient reorganization of Golgi morphology in wild-type macrophages, similar structural alterations persist in CCT alpha-deficient cells. Pro-tumor necrosis factor alpha and interleukin-6 remain lodged in the secretory compartment of CCT alpha-deficient macrophages after LPS stimulation. However, the lysosomal-mediated secretion pathways for interleukin-1 beta secretion and constitutive apolipoprotein E secretion are unaltered. Exogenous lysophosphatidylcholine restores LPS-stimulated secretion from CCT alpha-deficient cells, and elevated diacylglycerol levels alone do not impede secretion of pro-tumor necrosis factor alpha or interleukin-6. These results identify CCT alpha as a key component in membrane biogenesis during LPS-stimulated cytokine secretion from the Golgi complex.


Assuntos
Citocinas/metabolismo , Fosfatidilcolinas/biossíntese , Animais , Infecções Bacterianas/metabolismo , Biomarcadores/metabolismo , Diglicerídeos/biossíntese , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Modelos Biológicos , Nucleotidiltransferases/deficiência , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Esfingomielinas/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
2.
J Cell Biochem ; 97(2): 359-67, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16187300

RESUMO

Recent studies demonstrate that reactive oxygen species (ROS) are important mediators of acute pancreatitis, whether induced experimentally or in necrotizing pancreatitis in humans; however, the cellular processes involved remain unclear. Adapter protein CrkII, plays a central role for convergence of cellular signals from different stimuli. Cholecystokinin (CCK), which induces pancreatitis, stimulates CrkII tyrosine phosphorylation and CrkII protein complexes, raising the possibility it can be important in the acinar cell responses to ROS. Therefore, our aim was to investigate whether CrkII signaling is involved in the biological response of rat pancreatic acini to H2O2 and the intracellular mediators implicated. Treatment of isolated rat pancreatic acini with H2O2 rapidly stimulates CrkII phosphorylation, measured as electrophoretic mobility shift and by using a phosphospecific antibody (pTyr221). Tyrosine kinase blocker B44 inhibits the higher phosphorylation state, demonstrating that it occurs mainly in tyrosine residues. H2O2-induced CrkII phosphorylation is time- and concentration-dependent, showing maximal effect with 3 mM H2O2 at 5 min. The intracellular pathways induced by H2O2 leading to CrkII tyrosine phosphorylation do not involve PKC, intracellular calcium, PI3-K or the actin cytoskeleton integrity. ROS generation clearly promotes the formation of protein complex CrkII-PYK2. In conclusion, ROS clearly affect the key adapter protein CrkII signaling by two ways: stimulation of CkII phosphorylation and a functional consequence: formation of CrkII-protein complexes. Because of its central role in activating more distal pathways, CrkII might likely play an important role in the ability of ROS to induce pancreatic cellular injury and pancreatitis.


Assuntos
Peróxido de Hidrogênio/farmacologia , Pâncreas Exócrino/metabolismo , Pâncreas/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Actinas , Animais , Cálcio/fisiologia , Relação Dose-Resposta a Droga , Quinase 2 de Adesão Focal/metabolismo , Masculino , Pâncreas Exócrino/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteínas Quinases/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais , Fatores de Tempo
3.
Eur J Biochem ; 270(23): 4706-13, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14622258

RESUMO

Crk belongs to a family of adapter proteins whose structure allows interaction with tyrosine-phosphorylated proteins and is therefore an important modulator of downstream signals, representing a convergence of the actions of numerous stimuli. Recently, it was demonstrated that cholecystokinin (CCK) induced tyrosine phosphorylation of proteins related to fiber stress formation in rat pancreatic acini. Here, we investigated whether CCK receptor activation signals through CrkII and forms complexes with tyrosine-phosphorylated proteins in rat pancreatic acini. We demonstrated that CCK promoted the transient formation of CrkII-paxillin and CrkII-p130Cas complexes with maximal effect at 1 min. Additionally, CCK decreased the electrophoretic mobility of CrkII. This decrease was time- and concentration-dependent and inversely related with its function. Carbachol and bombesin also decreased CrkII electrophoretic mobility, whereas epidermal growth factor, vasoactive intestinal peptide, secretin or pituitary adenylate cyclase-activating polypeptide had no effect. CCK-induced CrkII electrophoretic shift was dependent on the Src family of tyrosine kinases and occurred in the intact animal, suggesting a physiological role of CrkII mediating CCK actions in the exocrine pancreas in vivo.


Assuntos
Colecistocinina/farmacologia , Pâncreas/efeitos dos fármacos , Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cálcio/metabolismo , Proteína Substrato Associada a Crk , Proteínas do Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Técnicas In Vitro , Substâncias Macromoleculares , Masculino , Pâncreas/enzimologia , Pâncreas/metabolismo , Paxilina , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-crk , Ratos , Ratos Wistar , Proteína p130 Retinoblastoma-Like , Sincalida/farmacologia , Fatores de Tempo
4.
J Neurochem ; 87(2): 417-26, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14511119

RESUMO

Lithium is widely used in the treatment of bipolar disorder, but despite its proven therapeutic efficacy, the molecular mechanisms of action are not fully understood. The present study was undertaken to explore lithium effects of the MEK/ERK cascade of protein kinases in astrocytes and neurons. In asynchronously proliferating rat cortical astrocytes, lithium decreased time- and dose-dependently the phosphorylation of MEK and ERK, with 1 mM concentrations achieving 60 and 50% inhibition of ERK and MEK, respectively, after a 7-day exposure. Lithium also inhibited [3H]thymidine incorporation into DNA and induced a G2/M cell cycle arrest. In serum-deprived, quiescent astrocytes, pre-exposure to lithium resulted in the inhibition of cell cycle re-entry as stimulated by the mitogen endothelin-1: under this experimental setting, lithium did not affect the rapid, peak phosphorylation of MEK taking place after 3-5 min, but was effective in inhibiting the long-term, sustained phosphorylation of MEK. Lithium inhibition of the astrocyte MEK/ERK pathway was independent of inositol depletion. Further, compound SB216763 inhibited Tau phosphorylation at Ser396 and stabilized cytosolic beta-catenin, consistent with the inhibition of glycogen synthase kinase-3 beta (GSK-3 beta), but failed to reproduce lithium effects on MEK and ERK phosphorylation and cell cycle arrest. In cerebellar granule neurons, millimolar concentrations of lithium enhanced MEK and ERK phosphorylation in a concentration-dependent manner, again through an inositol and GSK-3 beta independent mechanism. These opposing effects in astrocytes and neurons make lithium treatment a promising strategy to favour neural repair and reduce reactive gliosis after traumatic injury.


Assuntos
Astrócitos/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/enzimologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...