Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736414

RESUMO

Gelatin is a biopolymer with interesting properties that can be useful for biomaterial design for different applications such as drug delivery systems, or 3D scaffolds for tissue engineering. However, gelatin suffers from poor mechanical stability at physiological temperature, hence methods for improving its properties are highly desirable. In the present work, a new chemical cross-linking strategy based on triazolinedione ene-type chemistry towards stable hydrogel is proposed. Two different homobifunctional 1,2,4-triazoline-3,5(4H)-diones, namely 4,4'-hexane-1,6-diylbis(3H-1,2,4-triazoline-3,5(4H)-dione) 1 and 4,4'-[methylenebis(4,1-phenylene)]bis(3H-1,2,4-triazoline-3,5(4H)-dione) 2 were used as cross-linkers in different ratio to tyrosine residues in gelatin. The reaction was proved effective in all experimented conditions and hydrogels featured with different thermal stability were obtained. In general, the higher the cross-linker/tyrosine ratio, the more thermostable the hydrogel. The swelling properties are strictly dependent upon the chemical nature of the cross-linker.


Assuntos
Gelatina/química , Hidrogéis/química , Triazóis/química , Tirosina/química , Materiais Biocompatíveis/química , Estabilidade de Medicamentos , Teste de Materiais , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...