Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(6): 1669-1678, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38820192

RESUMO

HUH-tags have emerged as versatile fusion partners that mediate sequence specific protein-ssDNA bioconjugation through a simple and efficient reaction. Here we present HUHgle, a python-based interactive tool for the visualization, design, and optimization of substrates for HUH-tag mediated covalent labeling of proteins of interest with ssDNA substrates of interest. HUHgle streamlines design processes by integrating an intuitive plotting interface with a search function capable of predicting and displaying protein-ssDNA bioconjugate formation efficiency and specificity in proposed HUH-tag/ssDNA sequence combinations. Validation demonstrates that HUHgle accurately predicts product formation of HUH-tag mediated bioconjugation for single- and orthogonal-labeling reactions. In order to maximize the accessibility and utility of HUHgle, we have implemented it as a user-friendly Google Colab notebook which facilitates broad use of this tool, regardless of coding expertise.


Assuntos
DNA de Cadeia Simples , Software , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética
2.
Proteins ; 45(4): 449-55, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11746692

RESUMO

A simplistic, yet often used, view of protein stability is that amino acids attract other amino acids with similar polarity, whereas nonpolar and polar side chains repel. Here we show that nonpolar/polar interactions, namely Val or Ile bonding to Lys or Arg in alpha-helices, can in fact be stabilizing. Residues spaced i, i + 4 in alpha-helices are on the same face of the helix, with potential to favorably interact and stabilize the structure. We observe that the nonpolar/polar pairs Ile-Lys, Ile-Arg, and Val-Lys occur in protein helices more often than expected when spaced i, i + 4. Partially helical peptides containing pairs of nonpolar/polar residues were synthesized. Controls with i, i + 5 spacing have the residues on opposite faces of the helix and are less helical than the test peptides with the i, i + 4 interactions. Experimental circular dichroism results were analyzed with helix-coil theory to calculate the free energy for the interactions. All three stabilize the helix with DeltaG between -0.14 and -0.32 kcal x mol(-1). The interactions are hydrophobic with contacts between Val or Ile and the alkyl groups in Arg or Lys. Side chains such as Lys and Arg can thus interact favorably with both polar and nonpolar residues.


Assuntos
Proteínas/química , Arginina , Dicroísmo Circular , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Lisina , Modelos Moleculares , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica
3.
Biochem Soc Symp ; (68): 95-110, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11573350

RESUMO

Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.


Assuntos
Dobramento de Proteína , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Dicroísmo Circular , Estabilidade de Medicamentos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...