Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(15): 19393-19402, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37018749

RESUMO

Humans use textiles to maintain thermal homeostasis amidst environmental extremes but known textiles have limited thermal windows. There is evidence that polar-dwelling animals have evolved a different mechanism of thermoregulation by using optical polymer materials to achieve an on-body "greenhouse" effect. Here, we design a bilayer textile to mimic these adaptations. Two ultralightweight fabrics with complementary optical functions, a polypropylene visible-transparent insulator and a nylon visible-absorber-infrared-reflector coated with a conjugated polymer, perform the same putative function as polar bear hair and skin, respectively. While retaining familiar textile qualities, these layers suppress dissipation of body heat and maximize radiative absorption of visible light. Under moderate illumination of 130 W/m2, the textile achieves a heating effect of +10 °C relative to a typical cotton T-shirt which is 30% heavier. Current approaches to personal radiative heating are limited to absorber/reflector layer optimization alone and fail to reproduce the thermoregulation afforded by the absorber-transmitter structure of polar animal pelts. With increasing pressures to adapt to a rapidly changing climate, our work leverages optical polymers to bridge this gap and evolve the basic function of textiles.

3.
ECS Sens Plus ; 1(1)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36338794

RESUMO

Nanobodies are single variable domain antibodies isolated from camelids and are rapidly distinguishing themselves as ideal recognition elements in biosensors due to their comparative stability, ease of production and isolation, and high binding affinities. However, transducing analyte binding by nanobodies in real time is challenging, as most nanobodies do not directly produce an optical or electrical signal upon target recognition. Here, we report a general strategy to fabricate sensitive and selective electrochemical sensors incorporating nanobodies for detecting target analytes in heterogeneous media, such as cell lysate. Graphite felt can be covalently functionalized with recombinant HaloTag-modified nanobodies. Subsequent encapsulation with a thin layer of a hydrogel using a vapor deposition process affords encapsulated electrodes that directly display a decrease in current upon antigen binding, without added redox mediators. Differential pulse voltammetry affords clear and consistent decreases in electrode current across multiple electrode samples for specific antigen concentrations. The change in observed current vs increasing antigen concentration follows Langmuir binding characteristics, as expected. Importantly, selective and repeatable target binding in unpurified cell lysate is only demonstrated by the encapsulated electrode, with an antigen detection limit of ca. 30 pmol, whereas bare electrodes lacking encapsulation produce numerous false positive signals in control experiments.

4.
Anal Chem ; 94(37): 12699-12705, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054755

RESUMO

Reporting the activity of a specific viral protease remains an acute need for rapid point-of-care detection strategies that can distinguish active infection from a resolved infection. In this work, we present a simple colorimetric approach for reporting the activity of a specific viral protease through direct color conversion on a cotton swab, which has the potential to be extended to detect the corresponding virus. We use SARS-CoV-2 viral protease as a proof-of-concept model system. We use 4-aminomalachite green (4-AMG) as the base chromophore structure to design a CoV2-AMG reporter, which is selective toward the SARS-CoV-2 Mpro but does not produce any observable color change in the presence of other viral proteases. The color change is observable by the naked eye, as well as smartphone imaging, which affords a lower limit of detection. The simplicity and generalizability of the method could be instrumental in combating future viral outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Colorimetria/métodos , Humanos , Peptídeo Hidrolases , Proteases Virais
5.
ACS Omega ; 6(47): 31869-31875, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870009

RESUMO

Wearable sensors allow for portable, long-term health monitoring in natural environments. Recently, there has been an increase in demand for technology that can reliably monitor respiration, which can be indicative of cardiac diseases, asthma, and infection by respiratory viruses. However, to date, the most reliable respiration monitoring system involves a tightly worn chest belt that is not conducive to longitudinal monitoring. Herein, we report that accurate respiration monitoring can be effected using a fabric-based humidity sensor mounted within a face mask. Our humidity sensor is created using cotton fabrics coated with a persistently p-doped conjugated polymer, poly(3,4-ethylenedioxythiophene):chloride (PEDOT-Cl), using a previously reported chemical vapor deposition process. The vapor-deposited polymer coating displays a stable, rapid, and reversible change in conductivity with an increase in local humidity, such as the humidity changes experienced within a face mask as the wearer breathes. Thus, when integrated into a face mask, the PEDOT-Cl-coated cotton humidity sensor is able to transduce breaths into an electrical signal. The humidity sensor-incorporated face mask is able to differentiate between deep and shallow breathing, as well as breathing versus talking. The sensor-incorporated face mask platform also functions both while walking and sitting, providing equally high signal quality in both indoor and outdoor contexts. Additionally, we show that the face mask can be worn for long periods of time with a negligible decline in the signal quality.

6.
ACS Appl Polym Mater ; 3(5): 2561-2567, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34296186

RESUMO

To produce next-generation, shelf-stable biosensors for point-of-care diagnostics, a combination of rugged biomolecular recognition elements, efficient encapsulants, and innocuous deposition approaches is needed. Furthermore, to ensure that the sensitivity and specificity that are inherent to biological recognition elements are maintained in solid-state biosensing systems, site-specific immobilization chemistries must be invoked such that the function of the biomolecule remains unperturbed. In this work, we present a widely applicable strategy to develop robust solid-state biosensors using emergent nanobody (Nb) recognition elements coupled with a vapor-deposited polymer encapsulation layer. As compared to conventional immunoglobulin G antibodies, Nbs are smaller (12-15 kDa as opposed to ~150 kDa), have higher thermal stability and pH tolerance, boast greater ease of recombinant production, and are capable of binding antigens with high affinity and specificity. Photoinitiated chemical vapor deposition affords thin, protective polymer barrier layers over immobilized Nb arrays that allow for retention of Nb activity and specificity after both storage under ambient conditions and complete desiccation. Most importantly, we also demonstrate that vapor-deposited polymer encapsulation of Nb arrays enables specific detection of target proteins in complex heterogeneous samples, such as unpurified cell lysate, which is otherwise challenging to achieve with bare Nb arrays.

7.
Sci Adv ; 6(36)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917623

RESUMO

Climate change is leading to increased concentrations of ground-level ozone in farms and orchards. Persistent ozone exposure causes irreversible oxidative damage to plants and reduces crop yield, threatening food supply chains. Here, we show that vapor-deposited conducting polymer tattoos on plant leaves can be used to perform on-site impedance analysis, which accurately reveals ozone damage, even at low exposure levels. Oxidative damage produces a unique change in the high-frequency (>104 Hz) impedance and phase signals of leaves, which is not replicated by other abiotic stressors, such as drought. The polymer tattoos are resilient against ozone-induced chemical degradation and persist on the leaves of fruiting plants, thus allowing for frequent and long-term monitoring of cellular ozone damage in economically important crops, such as grapes and apples.

8.
SLAS Technol ; 25(1): 9-24, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829083

RESUMO

The emergence of flexible wearable electronics as a new platform for accurate, unobtrusive, user-friendly, and longitudinal sensing has opened new horizons for personalized assistive tools for monitoring human locomotion and physiological signals. Herein, we survey recent advances in methodologies and materials involved in unobtrusively sensing a medium to large range of applied pressures and motions, such as those encountered in large-scale body and limb movements or posture detection. We discuss three commonly used methodologies in human gait studies: inertial, optical, and angular sensors. Next, we survey the various kinds of electromechanical devices (piezoresistive, piezoelectric, capacitive, triboelectric, and transistive) that are incorporated into these sensor systems; define the key metrics used to quantitate, compare, and optimize the efficiency of these technologies; and highlight state-of-the-art examples. In the end, we provide the readers with guidelines and perspectives to address the current challenges of the field.


Assuntos
Monitores de Aptidão Física , Monitorização Fisiológica/instrumentação , Humanos , Locomoção
9.
Biosens Bioelectron ; 150: 111909, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31786020

RESUMO

Understanding longterm deep tissue damage caused by UV radiation is imperative for ensuring the health and safety of living organisms that are regularly exposed to radiation sources. While existing UV dosimeters can quantify the cumulative amount of radiation to which an organism is exposed, these sensors cannot reveal the presence and extent of internal tissue damage caused by such exposure. Here we describe a method that uses conducting polymer tattoos to detect UV radiation-induced deep tissue damage in living organisms using bioimpedance analysis (BIA), which allows for noninvasive, real-time measurements of body composition and point-of-care assessment of clinical condition. To establish a performance baseline for this method, we quantify the effects of UVA radiation on live plant leaves. Low-energy UVA waves penetrate further into biological tissue, as compared to UVB, UVC and ionizing radiation, and cause longlasting deep tissue damage that cannot be immediately and readily detected using surface-sensitive techniques, such as photogrammetry and epidermal sensors. We show that single-frequency bioimpedance analysis allows for sensitive, real-time monitoring of UVA damage: as UVA dose increases, the bioimpedance of a plant leaf measured at a frequency of 1 kHz linearly decreases until the extent of radiation damage saturates and the specimen is effectively necrotized. We establish a strong correlation between radiation fluence, internal biological damage and the bioimpedance signal measured using our conducting polymer tattoos, which supports the efficacy of our method as a new type of internal biodosimetry.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Polímeros/química , Raios Ultravioleta/efeitos adversos , Técnicas Biossensoriais/instrumentação , Espectroscopia Dielétrica/instrumentação , Condutividade Elétrica , Impedância Elétrica , Desenho de Equipamento , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Plantas/química , Plantas/ultraestrutura
10.
Sci Adv ; 5(3): eaaw0463, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30899786

RESUMO

We vapor print conformal conjugated polymer electrodes directly onto living plants and use these electrodes to probe the health of actively growing specimens using bioimpedance spectroscopy. Vapor-printed polymer electrodes, unlike their adhesive thin-film counterparts, do not delaminate from microtextured living surfaces as the organism matures and do not observably attenuate the natural growth pattern and self-sustenance of the plants investigated here. On-demand, noninvasive bioimpedance spectroscopy performed with long-lasting vapor-printed polymer electrodes can reliably detect deep tissue damage caused by dehydration and ultraviolet A exposure throughout the life cycle of a plant.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Eletrodos , Polímeros/química , Clorofila/análise , Desidratação/complicações , Impedância Elétrica , Flores/química , Flores/efeitos da radiação , Modelos Biológicos , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Plantas/química , Plantas/efeitos da radiação , Propriedades de Superfície , Raios Ultravioleta/efeitos adversos , Volatilização , Água/análise
11.
RSC Adv ; 9(16): 9198-9203, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517689

RESUMO

Commercial, untreated cotton fabrics have been directly silver coated using one-step electroless deposition and, subsequently, conformally encapsulated with a thin layer of poly(perfluorodecylacrylate) (PFDA) using initiated chemical vapor deposition (iCVD). The surface of these PFDA encapsulated fabrics are notably water-repellent while still displaying a surface resistance as low as 0.2 Ω cm-1, making them suitable for incorporation into launderable wearable electronics. X-ray photoelectron spectroscopy confirms that the PFDA encapsulation prevents oxidation of the silver coating, whereas unencapsulated samples display detrimental silver oxidation after a month of air exposure. The wash stability of PFDA-encapsulated, silver-coated cotton is evaluated using accelerated laundering conditions, following established AATCC protocols, and the samples are observed to withstand up to twenty home laundering cycles without notable mechanical degradation of the vapor-deposited PFDA encapsulation. As a proof-of-concept, PFDA-Ag cotton is employed as a top and bottom electrode in a layered, all-fabric triboelectric generator that produces voltage outputs as high as 25 V with small touch actions, such as tapping.

12.
ACS Appl Mater Interfaces ; 10(43): 36834-36840, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30295460

RESUMO

Lightweight energy storage technologies are integral for powering emerging wearable health monitors and smart garments. In-plane, interdigitated microsupercapacitors (MSCs) hold the greatest promise to be integrated into wearable electronics because of their miniaturized footprint, as compared to conventional, multilayered supercapacitors and batteries. Constructing MSCs directly on textiles, while retaining the fabric's pliability and tactile quality, will provide uniquely wearable energy storage systems. However, relative to plastic-backed or paper-based MSCs, garment-integrated MSCs are underreported. The challenge lies in creating electrochemically active fiber electrodes that can be turned into MSCs. We report a facile vapor deposition and sewing sequence to create rugged textile MSCs. Conductive threads are vapor-coated with a stably p-doped conducting polymer film and then sewn onto a stretchy textile to form three-dimensional, compactly aligned electrodes with the electrode dimensions defined by the knit structure of the textile backing. The resulting solid-state device has an especially high areal capacitance and energy density of 80 mF/cm2 and 11 µW h/cm2 with a polymer gel electrolyte, and an energy density of 34 µW h/cm2 with an ionic liquid electrolyte, sufficient to power contemporary iterations of wearable biosensors. These textile MSCs are also super deformable, displaying unchanging electrochemical performance after fully rolling-up the device.

13.
ACS Appl Mater Interfaces ; 10(44): 38574-38580, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30335944

RESUMO

Controlling mesoscale organization in thick films of electroactive polymers is crucial for studying and optimizing charge and ion transport in these disordered materials. Conventional approaches focus on directing long-range polymer aggregation and/or crystallization during film formation by using interfaces, flow and/or shear forces. Here, we describe an alternative method that takes advantage of naturally textured biological substrates and vapor-coating to structure thick-conjugated polymer films. Reactive vapor-coating is a technique that enables in situ synthesis of doped conjugated polymers inside a reduced-pressure reactor. Reactive vapor deposition conformally coats the surface of plant matter, such as leaves and flower petals, with conducting polymer films while leaving these living substrates undamaged. Importantly, the intricate surface features of plant matter are faultlessly reproduced in the coating, effectively creating thick, high-surface-area, electrochemically active conducting polymer electrodes on plant matter. A microstructured, 10 µm thick film of p-doped poly(3,4-ethylenedioxythiophene) on a pilea involucrata leaf acts as an all-polymer pseudocapacitor with a higher areal capacitance (142 mF/cm2) than an analogous film on a planar plastic substrate lacking microstructure (50 mF/cm2). Taken together, reactive vapor deposition and microstructured plant matter present a unique combination of processing technique and substrate than can yield a diverse library of controllably microstructured electronic polymer films.


Assuntos
Eletrônica , Transporte de Íons , Polímeros/química , Urticaceae/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Cristalização , Técnicas Eletroquímicas , Folhas de Planta/química , Resistência ao Cisalhamento , Especificidade por Substrato , Propriedades de Superfície
14.
Acc Chem Res ; 51(4): 850-859, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29521501

RESUMO

Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.


Assuntos
Nylons/química , Indústria Têxtil , Têxteis , Dispositivos Eletrônicos Vestíveis , Volatilização
15.
J Vis Exp ; (131)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29364260

RESUMO

We demonstrate a method of conformally coating conjugated polymers on arbitrary substrates using a custom-designed, low-pressure reaction chamber. Conductive polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), and a semiconducting polymer, poly(thieno[3,2-b]thiophene) (PTT), were deposited on unconventional highly-disordered and textured substrates with high surface areas, such as paper, towels and fabrics. This reported deposition chamber is an improvement of previous vapor reactors because our system can accommodate both volatile and nonvolatile monomers, such as 3,4-propylenedioxythiophene and thieno[3,2-b]thiophene. Utilization of both solid and liquid oxidants are also demonstrated. One limitation of this method is that it lacks sophisticated in situ thickness monitors. Polymer coatings made by the commonly used solution-based coating methods, such as spin-coating and surface grafting, are often not uniform or susceptible to mechanical degradation. This reported vapor phase deposition method overcomes those drawbacks and is a strong alternative to common solution-based coating methods. Notably, polymer films coated by the reported method are uniform and conformal on rough surfaces, even at a micrometer scale. This feature allows for future application of vapor deposited polymers in electronics devices on flexible and highly textured substrates.


Assuntos
Polímeros/química , Conformação Molecular
16.
ACS Appl Mater Interfaces ; 9(37): 32299-32307, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853279

RESUMO

We describe a process to transform commercial textiles and threads into electric heaters that can be cut/sewn or woven to fashion lightweight fabric heaters for local climate control and personal thermal management. Off-the-shelf fabrics are coated with a 1.5 µm thick film of a conducting polymer, poly(3,4-ethylenedioxythiophene), using an improved reactive vapor deposition method. Changes in the hand feel, weight, and breathability of the textiles after the coating process are imperceptible. The resulting fabric electrodes possess competitively low sheet resistances-44 Ω/□ measured for coated bast fiber textiles and 61 Ω/□ measured for coated cotton textiles-and act as low-power-consuming Joule heating elements. The electrothermal response of the textile electrodes remain unaffected after cutting and sewing due to the robustness of the conductive coating. Coated, conductive cotton yarns can also be plain-woven into a monolithic fabric heater. A demonstrative circuit design for a soft, lightweight, and breathable thermal glove is provided.


Assuntos
Têxteis , Eletrodos , Polímeros , Dispositivos Eletrônicos Vestíveis
17.
ACS Appl Mater Interfaces ; 9(27): 22449-22455, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28636350

RESUMO

We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO4 photoanode, although BiVO4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO4 photoanode to be back-illuminated, i.e., through the BiVO4/back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.

18.
Chem Commun (Camb) ; 53(53): 7182-7193, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28555696

RESUMO

Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

19.
Phys Chem Chem Phys ; 19(6): 4809-4820, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28133648

RESUMO

We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules "lying-down" (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet-triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.

20.
Org Lett ; 19(1): 210-213, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27966998

RESUMO

A small set of unsymmetrically substituted acene derivatives containing either aniline or dithiocarbamate moieties was synthesized. A stepwise, one-pot procedure was used to transform appropriate acenequinones to aniline-linked acenes in one step with moderate yields. A heretofore-unreported carbon disulfide activation process involving the formation of a trialkylammonium dithiocarbamate intermediate was found to be essential to convert these acene anilines to acene dithiocarbamates. The effects of the aniline and dithiocarbamate moieties on the photophysical properties of selected acene chromophores were assessed by UV/vis absorption and fluorescence spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...