Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0218413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199853

RESUMO

Little is known about long-term changes in coral reef fish communities. Here we present a new technique that leverages fish otoliths in reef sediments to reconstruct coral reef fish communities. We found over 5,400 otoliths in 169 modern and mid-Holocene bulk samples from Caribbean Panama and Dominican Republic mid-Holocene and modern reefs, demonstrating otoliths are abundant in reef sediments. With a specially-built reference collection, we were able to assign over 4,400 otoliths to one of 56 taxa (35 families) though mostly at genus and family level. Many otoliths were from juvenile fishes for which identification is challenging. Richness (by rarefaction) of otolith assemblages was slightly higher in modern than mid-Holocene reefs, but further analyses are required to elucidate the underlying causes. We compared the living fish communities, sampled using icthyocide, with the sediment otolith assemblages on four reefs finding the otolith assemblages faithfully capture the general composition of the living fish communities. Radiocarbon dating performed directly on the otoliths suggests that relatively little mixing of sediment layers particularly on actively accreting branching coral reefs. All otolith assemblages were strongly dominated by small, fast-turnover fish taxa and juvenile individuals, and our exploration on taxonomy, functional ecology and taphonomy lead us to the conclusion that intense predation is likely the most important process for otolith accumulation in reef sediments. We conclude that otolith assemblages in modern and fossil reef sediments can provide a powerful tool to explore ecological changes in reef fish communities over time and space.


Assuntos
Recifes de Corais , Peixes , Fósseis , Sedimentos Geológicos/química , Membrana dos Otólitos/química , Animais , República Dominicana , Panamá
2.
Commun Biol ; 2: 197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149641

RESUMO

Understanding the age structure and population dynamics of harvested species is crucial for sustainability, especially in fisheries. The Bigmouth Buffalo (Ictiobus cyprinellus) is a fish endemic to the Mississippi and Hudson Bay drainages. A valued food-fish for centuries, they are now a prized sportfish as night bowfishing has become a million-dollar industry in the past decade. All harvest is virtually unregulated and unstudied, and Bigmouth Buffalo are declining while little is known about their biology. Using thin-sectioned otoliths and bomb-radiocarbon dating, we find Bigmouth Buffalo can reach 112 years of age, more than quadrupling previous longevity estimates, making this the oldest known freshwater teleost (~12,000 species). We document numerous populations that are comprised largely (85-90%) of individuals over 80 years old, suggesting long-term recruitment failure since dam construction in the 1930s. Our findings indicate Bigmouth Buffalo require urgent attention, while other understudied fishes may be threatened by similar ecological neglect.


Assuntos
Conservação dos Recursos Naturais , Cipriniformes/genética , Cipriniformes/fisiologia , Lagos , Longevidade/genética , Rios , Animais , Ecologia , Ecossistema , Feminino , Pesqueiros , Fósseis , Água Doce , Masculino , Minnesota , Dinâmica Populacional , Datação Radiométrica
3.
Anal Chem ; 88(17): 8570-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27396439

RESUMO

A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 µm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution.

4.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26740617

RESUMO

Some of the most basic questions of sea turtle life history are also the most elusive. Many uncertainties surround lifespan, growth rates, maturity and spatial structure, yet these are critical factors in assessing population status. Here we examine the keratinized hard tissues of the hawksbill (Eretmochelys imbricata) carapace and use bomb radiocarbon dating to estimate growth and maturity. Scutes have an established dietary record, yet the large keratin deposits of hawksbills evoke a reliable chronology. We sectioned, polished and imaged posterior marginal scutes from 36 individual hawksbills representing all life stages, several Pacific populations and spanning eight decades. We counted the apparent growth lines, microsampled along growth contours and calibrated Δ(14)C values to reference coral series. We fit von Bertalanffy growth function (VBGF) models to the results, producing a range of age estimates for each turtle. We find Hawaii hawksbills deposit eight growth lines annually (range 5-14), with model ensembles producing a somatic growth parameter (k) of 0.13 (range 0.1-0.2) and first breeding at 29 years (range 23-36). Recent bomb radiocarbon values also suggest declining trophic status. Together, our results may reflect long-term changes in the benthic community structure of Hawaii reefs, and possibly shed light on the critical population status for Hawaii hawksbills.


Assuntos
Exoesqueleto/química , Bombas (Dispositivos Explosivos) , Recifes de Corais , Tartarugas/fisiologia , Animais , Biodiversidade , Havaí , Datação Radiométrica , Fatores de Tempo , Tartarugas/anatomia & histologia , Tartarugas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...