Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 125(5)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33959467

RESUMO

The Global Modeling and Assimilation Office (GMAO) has recently released a new version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal prediction (S2S) system, GEOS-S2S-2, that represents a substantial improvement in performance and infrastructure over the previous system. The system is described here in detail, and results are presented from forecasts, climate equillibrium simulations and data assimilation experiments. The climate or equillibrium state of the atmosphere and ocean showed a substantial reduction in bias relative to GEOS-S2S-1. The GEOS-S2S-2 coupled reanalysis also showed substantial improvements, attributed to the assimilation of along-track Absolute Dynamic Topography. The forecast skill on subseasonal scales showed a much-improved prediction of the Madden-Julian Oscillation in GEOS-S2S-2, and on a seasonal scale the tropical Pacific forecasts show substantial improvement in the east and comparable skill to GEOS-S2S-1 in the central Pacific. GEOS-S2S-2 anomaly correlations of both land surface temperature and precipitation were comparable to GEOS-S2S-1, and showed substantially reduced root mean square error of surface temperature. The remaining issues described here are being addressed in the development of GEOS-S2S Version 3, and with that system GMAO will continue its tradition of maintaining a state of the art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as to evaluate additional sources of predictability in the earth system through the expanded coupling of the earth system model and assimilation components.

2.
Nature ; 565(7737): 31-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602742
4.
Nat Commun ; 7: 13903, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991518

RESUMO

Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

5.
Nature ; 514(7520): 80-3, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25279921

RESUMO

Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA