Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(19): 5024-5040, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947510

RESUMO

Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: (1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. (2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. (3) Traits and/or their plasticity were often correlated with population source climate (R2 up to .77 and .66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.


Assuntos
Populus , Árvores , Genótipo , Fenótipo , Populus/genética , Seleção Genética , Árvores/genética
2.
Mitochondrial DNA B Resour ; 6(9): 2572-2574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377832

RESUMO

Onchocerca lupi, Rodonaja 1967, is an emerging, zoonotic filarial nematode parasite that causes ocular disease in dogs, cats, wild canids, and humans. It is the causative agent of ocular onchocercosis in canines with increasing incidence in both North America and the Old World during the early twenty-first century. We report the complete mitochondrial genome of an O. lupi isolate from a dog from Arizona, southwestern USA, and its genetic differentiation from related Onchocerca species. The whole mitochondrial genome was obtained from whole genome sequencing of genomic DNA isolated from an adult worm. This mitogenome is 13,766 bp in size and contains 36 genes and a control region. This mitogenome provides a valuable resource for future studies involving epidemiological surveillance, population genetics, phylogeography, and comparative mitogenomics of this emerging pathogen and other parasitic nematodes.

3.
Emerg Infect Dis ; 26(12): 2989-2993, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219658

RESUMO

The Onchocerca lupi nematode infects dogs, cats, and humans, but whether it can be spread by coyotes has been unknown. We conducted surveillance for O. lupi nematode infection in coyotes in the southwestern United States. We identified multiple coyote populations in Arizona and New Mexico as probable reservoirs for this species.


Assuntos
Coiotes , Doenças do Cão , Oncocercose , Animais , Arizona/epidemiologia , Reservatórios de Doenças , Doenças do Cão/epidemiologia , Cães , New Mexico , Onchocerca/genética , Oncocercose/epidemiologia , Oncocercose/veterinária , Sudoeste dos Estados Unidos , Estados Unidos/epidemiologia , Zoonoses
4.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960901

RESUMO

Root endophytes are a promising tool for increasing plant growth, but it is unclear whether they perform consistently across plant hosts. We characterized the blue grama (Bouteloua gracilis) root microbiome using two sequencing methods, quantified the effects of root endophytes in the original host (blue grama) and an agricultural recipient, corn (Zea mays), under drought and well-watered conditions and examined in vitro mechanisms for plant growth promotion. 16S rRNA amplicon sequencing revealed that the blue grama root microbiome was similar across an elevation gradient, with the exception of four genera. Culturing and Sanger sequencing revealed eight unique endophytes belonging to the genera Bacillus, Lysinibacillus and Pseudomonas. All eight endophytes colonized corn roots, but had opposing effects on aboveground and belowground biomass in each plant species: they increased blue grama shoot mass by 45% (19) (mean +/- SE) while decreasing corn shoot mass by 10% (19), and increased corn root:shoot by 44% (7), while decreasing blue grama root:shoot by 17% (7). Furthermore, contrary to our expectations, endophytes had stronger effects on plant growth under well-watered conditions rather than drought conditions. Collectively, these results suggest that ecological features, including host identity, bacterial traits, climate conditions and morphological outcomes, should be carefully considered in the design and implementation of agricultural inocula.


Assuntos
Endófitos , Raízes de Plantas , Biomassa , Endófitos/genética , RNA Ribossômico 16S/genética , Alocação de Recursos
5.
Fungal Biol ; 123(12): 895-904, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31733732

RESUMO

The Orchidaceae are globally distributed and represent a diverse lineage of obligate mycotrophic plants. Given their dependence on symbiotic fungi for germination and/or plant development, fungal community structure in substrates is expected to influence the distribution and persistence of orchid species. Yet, simultaneous characterization of orchid mycorrhizal fungal (OMF) communities in roots and in soil is rarely reported. To explain the co-distributions of OMF in roots, orchid-occupied, and bulk soil, we characterized mycorrhizal fungi associated with Platanthera praeclara over multiple years across its entire natural distribution within the North American tallgrass prairie. Root derived OMF communities included 24 Ceratobasidiaceae and 7 Tulasnellaceae operational taxonomic units (OTUs) though the orchid exhibited high spatio-temporal specificity toward a single Ceratobasidiaceae OTU, which was strongly stable across population sizes and phenological stages of the sampled individuals. The preferred OMF OTUs were primarily restricted to orchid-occupied locations while infrequent or absent in bulk soil. Variation in soil OMF assemblies was explained most by soil moisture, magnesium, manganese, and clay. In this first study of coupled root and soil OMF communities across a threatened grassland ecosystem, we report a strong relationship, further nuanced by soil chemistry, between a rare fungus and a rare orchid.


Assuntos
Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , Especificidade de Hospedeiro , Micorrizas/crescimento & desenvolvimento , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Pradaria , Interações entre Hospedeiro e Microrganismos , Microbiota , América do Norte , Raízes de Plantas/microbiologia , Microbiologia do Solo
6.
Emerg Microbes Infect ; 7(1): 46, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29593263

RESUMO

A wide range of mammals are susceptible to infection by the fungal species Coccidioides immitis and C. posadasii. In humans, 60% of infections are asymptomatic; however, certain patients may develop a severe and deep systemic mycosis called coccidioidomycosis. Genetic analysis suggests that the majority of clinical isolates recovered from South America are C. posadasii; however, little is known about the prevalence, species distribution, and ecological factors that favor the occurrence of this pathogen in those areas. By using a combined quantitative polymerase chain reaction (qPCR)-based approach and mycobiome amplicon sequencing, we provide evidence that at least two genotypes of C. posadasii are found in the xerophytic environment in Venezuela. We detected a 3806-fold range in the amount of Coccidioides DNA when comparing among the sampled locations, which indicates that human exposure risk is variable, and is one critical factor for disease manifestation. We identified fungal communities that are correlated with a higher prevalence of C. posadasii, suggesting that a combination of specific microbes and a xeric microenvironment may favor the growth of Coccidioides in certain locations. Moreover, we discuss the use of a combinatorial approach, using both qPCR and deep-sequencing methods to assess and monitor fungal pathogen burden at outbreak sources.


Assuntos
Coccidioides/genética , Coccidioides/isolamento & purificação , Coccidioidomicose/epidemiologia , Microbiologia do Solo , Animais , Coccidioides/crescimento & desenvolvimento , Coccidioides/patogenicidade , Coccidioidomicose/diagnóstico , Coccidioidomicose/microbiologia , Surtos de Doenças/prevenção & controle , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Micobioma/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Venezuela/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...