Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biology (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37508384

RESUMO

Integrin receptors are essential contributors to neurite outgrowth and axon elongation. Activated integrins engage components of the extracellular matrix, enabling the growth cone to form point contacts, which connect the extracellular substrate to dynamic intracellular protein complexes. These adhesion complexes facilitate efficient growth cone migration and neurite extension. Major signalling pathways mediated by the adhesion complex are instigated by focal adhesion kinase (FAK), whilst axonal guidance molecules present in vivo promote growth cone turning or retraction by local modulation of FAK activity. Activation of FAK is marked by phosphorylation following integrin engagement, and this activity is tightly regulated during neurite outgrowth. FAK inhibition slows neurite outgrowth by reducing point contact turnover; however, mutant FAK constructs with enhanced activity stimulate aberrant outgrowth. Importantly, FAK is a major structural component of maturing adhesion sites, which provide the platform for actin polymerisation to drive leading edge advance. In this review, we discuss the coordinated signalling of integrin receptors and FAK, as well as their role in regulating neurite outgrowth and axon elongation. We also discuss the importance of the integrin-FAK axis in vivo, as integrin expression and activation are key determinants of successful axon regeneration following injury.

2.
J Integr Neurosci ; 21(4): 118, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35864769

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) present a formidable barrier to regrowing axons following spinal cord injury. CSPGs are secreted in response to injury and their glycosaminoglycan (GAG) side chains present steric hindrance preventing the growth of axons through the lesion site. The enzyme chondroitinase has been proven effective at reducing the CSPG GAG chains, however, there are issues with direct administration of the enzyme specifically due to its limited timeframe of activity. In this perspective article, we discuss the evolution of chondroitinase-based therapy in spinal cord injury as well as up-to-date advances on this critical therapeutic. We describe the success and the limitations around use of the bacterial enzyme namely issues around thermostability. We then discuss current efforts to improve delivery of chondroitinase with a push towards gene therapy, namely through the use of lentiviral and adeno-associated viral vectors, including the temporal modulation of its expression and activity. As a chondroitinase therapy for spinal cord injury inches nearer to the clinic, the drive towards an optimised delivery platform is currently underway.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Axônios/fisiologia , Condroitina ABC Liase/metabolismo , Condroitina ABC Liase/uso terapêutico , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/uso terapêutico , Condroitinases e Condroitina Liases/metabolismo , Condroitinases e Condroitina Liases/uso terapêutico , Humanos , Regeneração Nervosa/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
3.
Cells ; 11(6)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35326388

RESUMO

Neuronal polarity established in developing neurons ensures proper function in the mature nervous system. As functionally distinct cellular compartments, axons and dendrites often require different subsets of proteins to maintain synaptic transmission and overall order. Although neurons in the mature CNS do not regenerate throughout life, their interactions with their extracellular environment are dynamic. The axon remains an overall protected area of the neuron where only certain proteins have access throughout the lifespan of the cell. This is in comparison to the somatodendritic compartment, where although it too has a specialised subset of proteins required for its maintenance, many proteins destined for the axonal compartment must first be trafficked through the former. Recent research has shown that axonal proteins contain specific axon-targeting motifs that permit access to the axonal compartment as well as downstream targeting to the axonal membrane. These motifs target proteins to the axonal compartment by a variety of mechanisms including: promoting segregation into axon-targeted secretory vesicles, increasing interaction with axonal kinesins and enhancing somatodendritic endocytosis. In this review, we will discuss axon-targeting motifs within the context of established neuron trafficking mechanisms. We will also include examples of how these motifs have been applied to target proteins to the axonal compartment to improve both tools for the study of axon biology, and for use as potential therapeutics for axonopathies.


Assuntos
Axônios , Neurônios , Axônios/metabolismo , Endocitose , Cinesinas , Proteínas de Membrana/metabolismo , Neurônios/metabolismo
5.
Neural Regen Res ; 16(4): 614-617, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063709

RESUMO

Cell transplantation has come to the forefront of regenerative medicine alongside the discovery and application of stem cells in both research and clinical settings. There are several types of stem cells currently being used for pre-clinical regenerative therapies, each with unique characteristics, benefits and limitations. This brief review will focus on recent basic science advancements made with embryonic stem cells and induced pluripotent stem cells. Both embryonic stem cells and induced pluripotent stem cells provide platforms for new neurons to replace dead and/or dying cells following injury. Due to their capacity for reprogramming and differentiation into any neuronal type, research in preclinical rodent models has shown that embryonic stem cells and induced pluripotent stem cells can integrate, survive and form connections in the nervous system similar to de novo cells. Going forward however, there are some limitations to consider with the use of either stem cell type. Ethically, embryonic stem cells are not an ideal source of cells, genetically, induced pluripotent stem cells are not ideal in terms of personalized treatment for those with certain genetic diseases the latter of which may guide regenerative medicine away from personalized stem cell based therapies and into optimized stem cell banks. Nonetheless, the potential of these stem cells in central nervous system regenerative therapy is only beginning to be appreciated. For example, through genetic modification, stem cells serve as ideal platforms to reintroduce missing or downregulated molecules into the nervous system to further induce regenerative growth. In this review, we highlight the limitations of stem cell based therapies whilst discussing some of the means of overcoming these limitations.

6.
Gene Ther ; 28(7-8): 393-395, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32978509
7.
Sci Rep ; 10(1): 11262, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647242

RESUMO

Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.


Assuntos
Sistema Nervoso Central/metabolismo , Condroitina ABC Liase/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Feminino , Terapia Genética , Integrinas/metabolismo , Lentivirus/enzimologia , Regeneração Nervosa/efeitos dos fármacos , Neuritos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
8.
Pharmaceutics ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635142

RESUMO

Drug delivery to the brain is highly hindered by the presence of the blood-brain barrier (BBB), which prevents the entry of many potential drugs/biomolecules into the brain. One of the current strategies to achieve gene therapy for neurodegenerative diseases involves direct injection of a viral vector into the brain. There are various disadvantages of viral vectors, including limitations of cargo size and safety concerns. Nanomolecules, such as dendrimers, serve as an excellent alternative to viral delivery. In this study, as proof-of-concept, we used a surface-modified dendrimer complex and delivered large plasmids to cells in vitro and in vivo in healthy rats via intracranial injection. The dendrimers were biodegradable by chemicals found within cells and toxicity assays revealed that the modified dendrimers were much less toxic than unmodified amine-surface dendrimers. As mentioned in our previous publication, these dendrimers with appropriately modified surfaces are safe, can deliver large plasmids to the brain, and can overcome the cargo size limitations associated with viral vectors. The biocompatibility of this dendritic nanomolecule and the ability to finely tune its surface chemistry provides a gene delivery system that could facilitate future in vivo cellular reprograming and other gene therapies.

9.
Exp Neurol ; 328: 113273, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142803

RESUMO

This report was produced by an Expert Working Group (EWG) consisting of UK-based researchers, veterinarians and regulators of animal experiments with specialist knowledge of the use of animal models of spinal cord injury (SCI). It aims to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Specific animal welfare issues were identified and discussed, and practical measures proposed, with the aim of reducing animal use and suffering, reducing experimental variability, and increasing translatability within this critically important research field.


Assuntos
Bem-Estar do Animal/normas , Modelos Animais de Doenças , Traumatismos da Medula Espinal , Animais , Roedores
10.
J Cell Mol Med ; 23(8): 5211-5224, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162801

RESUMO

Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague-Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs-IL-10 and TBI + MSCs-GFP. Thirty-six hours post-TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs-IL-10 or MSCs-GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs-IL-10 significantly reduced their numbers in comparison to MSCs alone. MSCs-IL-10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs-IL-10 may be an effective strategy to protect against TBI-induced neuronal damage.


Assuntos
Autofagia/genética , Lesões Encefálicas Traumáticas/terapia , Interleucina-10/genética , Transplante de Células-Tronco Mesenquimais , Animais , Biomarcadores Tumorais/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Sobrevivência Celular/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Mitofagia/genética , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/genética , Ratos
11.
Front Cell Neurosci ; 13: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809126

RESUMO

After spinal cord injury (SCI), regeneration of adult motor axons such as axons in the corticospinal tract (CST) is severely limited. Alongside the inhibitory lesion environment, most neuronal subtypes in the mature central nervous system (CNS) are intrinsically unrepairable. With age, expression of growth-promoting proteins in neurons, such as integrins, declines. Integrin receptors allow communication between the extracellular matrix (ECM) and cell cytoskeleton and their expression in axons facilitates growth and guidance throughout the ECM. The α9ß1 integrin heterodimer binds to tenascin-C (TN-C), an ECM glycoprotein expressed during development and after injury. In the mature CST however, expression of the α9 integrin subunit is downregulated, adding to the intrinsic inability of axons to regenerate. Our previous work has shown the α9 integrin subunit is not trafficked within axons of mature CST or rubrospinal tracts (RSTs). Thus, here we have utilized human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) to increase expression of α9 integrinwithin the developing rat CST. We demonstrate that human NPCs (hNPCs) express endogenous levels of both α9 and ß1 integrin subunits as well as cortical neuron markers such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) interacting protein 2 (Ctip2) and T-box brain 1 (Tbr1). In addition, lentivirus-mediated α9 integrin overexpression in hNPCs resulted in increased neurite outgrowth in the presence of TN-C in vitro. Following transplantation into the sensorimotor cortex of newborn rats, both wild type (WT) and α9-expressing hNPCs extend along the endogenous CST and retain expression of α9 throughout the length of the axonal compartment for up to 8 weeks following transplantation. These data highlight the growth potential of transplanted human iPSCs which may be a future target for regenerative therapies after nervous system injury.

12.
Behav Brain Res ; 356: 1-7, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107224

RESUMO

Stroke is a leading cause of death and disability and currently only has one FDA approved pharmacological treatment (tissue plasminogen activator), which is only administered to a fraction of stroke patients due to contraindications. New treatments are desperately needed but most treatments fail in clinical trials, even after showing benefit in animal models of stroke. To increase the translatability of animal stroke research to humans, sensitive functional measures for both the acute and chronic stages in animal models of stroke are needed. The objective of this study was to determine the sensitivity of certain behavioral tasks, up to seven weeks following occlusion of the middle cerebral artery (MCAo) in rats. A battery of behavioral tasks, including rotorod, cylinder, and limb-placement, was conducted weekly for seven weeks. Also, a behavioral flexibility operant task was introduced at the end of the study to measure cognitive deficits. All functional outcome measures showed significant differences between stroke and control groups, indicating that these tasks are sensitive enough to detect deficits in a long-term MCAo study in rats. This provides useful information for those trying to increase translatability in their own stroke research by providing long-term sensitive testing paradigms in a relevant stroke model.


Assuntos
Comportamento Animal/fisiologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/fisiopatologia , Animais , Escala de Avaliação Comportamental , Isquemia Encefálica/fisiopatologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
13.
Sci Adv ; 4(10): eaau1338, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333995

RESUMO

Optical approaches to fluorescent, spectroscopic, and morphological imaging have made exceptional advances in the last decade. Super-resolution imaging and wide-field multiphoton imaging are now underpinning major advances across the biomedical sciences. While the advances have been startling, the key unmet challenge to date in all forms of optical imaging is to penetrate deeper. A number of schemes implement aberration correction or the use of complex photonics to address this need. In contrast, we approach this challenge by implementing a scheme that requires no a priori information about the medium nor its properties. Exploiting temporal focusing and single-pixel detection in our innovative scheme, we obtain wide-field two-photon images through various turbid media including a scattering phantom and tissue reaching a depth of up to seven scattering mean free path lengths. Our results show that it competes favorably with standard point-scanning two-photon imaging, with up to a fivefold improvement in signal-to-background ratio while showing significantly lower photobleaching.

14.
J Neurosci ; 38(47): 10102-10113, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30282728

RESUMO

In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.


Assuntos
Agrecanas/deficiência , Matriz Extracelular/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Visual/metabolismo , Agrecanas/análise , Agrecanas/genética , Animais , Linhagem Celular , Matriz Extracelular/química , Matriz Extracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/química , Estimulação Luminosa/métodos , Córtex Visual/química
15.
Neural Plast ; 2018: 2952386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849554

RESUMO

The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a "developmental state" to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury.


Assuntos
Axônios/fisiologia , Líquido Extracelular/fisiologia , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/patologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Humanos , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Traumatismos da Medula Espinal/patologia
16.
Cells ; 7(3)2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534450

RESUMO

Integrin activation is essential for creating functional transmembrane receptors capable of inducing downstream cellular effects such as cell migration, cell spreading, neurite outgrowth and axon regeneration. Integrins are bidirectional signalling molecules that mediate their effects by 'inside-out' and 'outside-in' signalling. This review will provide a detailed overview of integrin activation focusing on intracellular activation in neurons and discussing direct implications in the regulation of neurite outgrowth and axon regeneration.

17.
Biol Rev Camb Philos Soc ; 93(3): 1339-1362, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29446228

RESUMO

Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica/fisiologia , Integrinas/metabolismo , Regeneração Nervosa/fisiologia , Ferimentos e Lesões , Animais , Integrinas/genética
18.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28703472

RESUMO

A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.


Assuntos
Imagem Multimodal/métodos , Análise Espectral Raman/métodos , Tomografia de Coerência Óptica/métodos , Animais , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Poliestirenos/química , Ratos
19.
Bio Protoc ; 7(16)2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28920069

RESUMO

The Hargreaves test is specifically designed to assess thermal pain sensation in rodents such as rats and mice. This test has been used in experiments involving pain sensitization or recovery of thermal pain response following neural injury and regeneration. We present here a step-by-step protocol highlighted with important notes to guide first-time users through the learning process. Additionally, we have also included representative data from a rat model of sensory denervation showing how the data can be analysed to obtain meaningful results. We hope that this protocol can also assist potential users in deciding whether the Hargreaves test is a suitable test for their experiment.

20.
Sci Rep ; 7(1): 1435, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469191

RESUMO

We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode, an increase in the field of view over the use of a standard Gaussian beam by a factor of six is demonstrated. This implementation for light sheet microscopy opens up new possibilities across a wide range of biomedical applications, especially for the study of neuronal processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...