Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(17): 6699-6705, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083361

RESUMO

Previous studies have shown that humans can taste maltooligosaccharides [MOS; degree of polymerization (DP) of 3-20] but not maltopolysaccharides (MPS; DP of >20) and that their taste detection is independent of the canonical sweet taste receptor. The objectives of this study were to determine the DP ranges of target stimuli that are tasted and further to investigate the impact of DP on taste detectability. To achieve this goal, we prepared three food-grade MOS samples with narrow DP ranges using flash chromatography: low (4-6), medium (7-12), and high (14-21) DP samples. Following sample preparation, we asked subjects to discriminate the MOS stimuli from blanks after the stimuli were swabbed on the tip of tongue. All stimuli were initially presented at 75 mM. Acarbose, an α-glucosidase inhibitor, was added to all stimuli, including blanks, to prevent oral hydrolysis of MOS. After determining that all three MOS samples were detected at a significant degree, we conducted follow-up studies to explore whether the detection of these samples differed at a range of concentrations (18-56 mM). The results showed that detection rates of medium- and high-DP MOS varied in a concentration-dependent manner (p < 0.05). In contrast, low-DP MOS showed a consistent detection rate across concentrations tested. These results demonstrate that humans can taste MOS stimuli of all chain lengths and that relative taste detection rates are generally similar across MOS with varying chain lengths.


Assuntos
Percepção Gustatória , Paladar , Polímeros/química , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
2.
Food Chem ; 401: 134071, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115234

RESUMO

Flash chromatography utilizing microcrystalline cellulose (MCC) stationary phases and aqueous ethanol mobile phases have shown promise for the production of food-grade oligosaccharides. The current work extends the scope of these systems by demonstrating their use for the production of food-grade maltooligosaccharide preparations enriched in high degree of polymerization (DP) components. Furthermore, it is shown herein that caution must be exercised when using these MCC-based chromatographic systems in order to avoid sensory-relevant contamination of the final oligosaccharide preparations. Such contamination, most notably off-taste, is shown to arise from impurities common to commercially available MCC that manifest under certain chromatographic scenarios. A mitigation strategy based on washing the stationary phase with appropriate aqueous-ethanol solutions (i.e., accounting for the entire mobile phase concentration range) prior to oligosaccharide fractionation is presented as a means by which to avoid contamination.


Assuntos
Fracionamento Químico , Cromatografia , Cromatografia/métodos , Oligossacarídeos/química , Etanol/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...