Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Lett ; 49(4): 782-785, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359181

RESUMO

Systems with strong photon-phonon interaction and optomechanical instability are perspective for the generation of coherent phonons and photons. We predict the existence of a hard mode of excitation in such systems when a jump-like increase in the photon intensity takes place at the generation threshold. We derive an analytical expression that defines conditions for such an increase. We demonstrate that the hard excitation mode in systems with optomechanical instability arises due to an additional phase condition for the existence of a nonzero solution. We propose to use systems with optomechanical instability operating in the hard excitation mode to create highly sensitive sensors.

2.
Opt Lett ; 48(7): 1822-1825, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221775

RESUMO

We consider a phonon laser based on an optomechanical system consisting of two optical modes interacting with each other via a phononic mode. An external wave exciting one of the optical modes plays the role of the pumping. We show that in this system at some amplitude of the external wave an exceptional point exists. When the external wave amplitude is less than one corresponding to the exceptional point, the splitting of the eigenfrequencies takes place. We demonstrate that in this case, the periodic modulation of the external wave amplitude can result in simultaneous generation of photons and phonons even below the threshold of optomechanical instability.

3.
Phys Rev Lett ; 128(6): 065301, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213178

RESUMO

In this Letter, we give an analytical quantum description of a nonequilibrium polariton Bose-Einstein condensate (BEC) based on the solution of the master equation for the full polariton density matrix in the limit of fast thermalization. We find the density matrix of a nonequilibrium BEC, that takes into account quantum correlations between all polariton states. We show that the formation of BEC is accompanied by the build-up of cross-correlations between the ground state and the excited states reaching their highest values at the condensation threshold. Despite the nonequilibrium nature of polariton systems, we show the average population of polariton states exhibits the Bose-Einstein distribution with an almost zero effective chemical potential above the condensation threshold similar to an equilibrium BEC. We demonstrate that above threshold the effective temperature of polaritons drops below the reservoir temperature.

4.
Nano Lett ; 22(1): 105-110, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910482

RESUMO

Photobleaching is one of the basic chemical processes that occur naturally in organic molecules. In this work, we investigate the quantum dynamics of Cy 7.5 dye molecules optically coupled to Au nanorod particles and experimentally demonstrate the decrease of the photobleaching rate in this hybrid system. We discover the effect of a resonance-like behavior not observed before for any type of emitter─the photobleaching rate of the dye molecules reaches a minimum for a suitable number of molecules coupled to the nanoparticle. The manifestation of the effect is the consequence of shifts in the energy levels in the hybrid system caused by the change in the number of molecules coupled to a nanoparticle. The energy shifts are the prerequisite for the effective depopulation of the triplet level, which is responsible for the photodegradation mechanism. The discovered effect paves the way for increasing the efficiency of optoelectronic and photovoltaic devices.


Assuntos
Nanopartículas , Nanopartículas/química , Fotodegradação , Fotólise
5.
Phys Rev E ; 106(6-1): 064108, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671074

RESUMO

An ideal equilibrium Bose-Einstein condensate (BEC) is usually considered in the grand canonical (µVT) ensemble, which implies the presence of the chemical equilibrium with the environment. However, in most experimental scenarios, the total amount of particles in BEC is determined either by the initial conditions or by the balance between dissipation and pumping. As a result, BEC may possess the thermal equilibrium but almost never the chemical equilibrium. In addition, many experimentally achievable BECs are non-ideal due to interaction between particles. In the recent work [Shiskov et al., Phys. Rev. Lett. 128, 065301 (2022)0031-900710.1103/PhysRevLett.128.065301], it has been shown that invariant subspaces in the system Hilbert space appear in non-equilibrium BEC in the fast thermalization limit. In each of these subspaces, Gibbs distribution is established with a certain number of particles that makes it possible to investigate properties of non-ideal non-equilibrium BEC independently in each invariant subspace. In this work, we analyze the BEC stability due to change in dispersion curve caused by non-linearity in BEC. Generally, non-linearity leads to the redshift or blueshift of the dispersion curve and to the change in the effective mass of the particles. We show that the redshift of the dispersion curve can lead to the negative compressibility of BEC and onset of instability, whereas the change in the effective mass always makes BEC more stable. We find the explicit condition for the particle density in BEC, at which the negative compressibility appears. We show that the appearance of BEC instability is followed by the formation of stable and spatially inhomogeneous BEC.

7.
Opt Lett ; 46(21): 5292-5295, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724458

RESUMO

In this Letter, we give a new, to the best of our knowledge, perspective on the origin of light coherence in lasers. We demonstrate that a coherence appears below the lasing threshold and manifests itself as long-range correlations between polarizations of active medium atoms. These correlations contribute to the formation of a collective state of atomic polarizations and electromagnetic field modes, which interacts more effectively with the active medium and lases when pumping exceeds the lasing threshold. We demonstrate that inhibiting these atomic correlations leads to the destruction of the collective state and suppression of lasing. The obtained results open up new ways to control coherence.

8.
Nature ; 597(7877): 493-497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552252

RESUMO

The recent progress in nanotechnology1,2 and single-molecule spectroscopy3-5 paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation6, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction. Here, we utilize stable excitons dressed with high-energy molecular vibrations, allowing for single-photon nonlinear operation at ambient conditions. This opens new horizons for practical implementations like sub-picosecond switching, amplification and all-optical logic at the fundamental quantum limit.

9.
Sci Rep ; 11(1): 4197, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603084

RESUMO

Usually, the cavity is considered an intrinsic part of laser design to enable coherent emission. For different types of cavities, it is assumed that the light coherence is achieved by different ways. We show that regardless of the type of cavity, the lasing condition is universal and is determined by the ratio of the width of the atomic spectrum to the product of the number of atoms and the spontaneous radiation rate in the laser structure. We demonstrate that cavity does not play a crucial role in lasing since it merely decreases the threshold by increasing the photon emission rate thanks to the Purcell effect. A threshold reduction can be achieved in a cavity-free structure by tuning the local density of states of the electromagnetic field. This paves the way for the design of laser devices based on cavity-free systems.

10.
Opt Express ; 27(24): 35376-35384, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878708

RESUMO

We develop a theory of lasing of a collection of pumped active atoms without a resonator (either regular or random). Due to spontaneous emission into free space, phases of free space electromagnetic modes fluctuate. These phase fluctuations can be reduced to frequency fluctuations. The closer the frequency of fluctuation to the transition frequency of the active atoms, the higher lifetime of the fluctuation. We show that because of this, the average frequency of modes pulls toward the transition frequency. This leads to a maximum in the density of states of the electromagnetic field and a decrease of the mode group velocity. Consequently, the coupling of modes with atoms as well as the lifetime of fluctuations increase. Thus, mode pulling provides positive feedback. When the pump rate exceeds a certain threshold, the lifetime of one of the realized fluctuations diverges, and radiation becomes coherent.

11.
Opt Express ; 27(16): 23396-23407, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510617

RESUMO

We study the second-order coherence function of a plasmonic nanoantenna fed by near-field of a single-photon source incoherently pumped in the continuous wave regime. We consider the case of a strong Purcell effect, when the single-photon source radiates almost entirely in the mode of a nanoantenna. We show that when the energy of thermal fluctuations, kT, of the nanoantenna is much smaller than the interaction energy between the electromagnetic field of the nanoantenna mode and the single-photon source, ℏΩR, the statistics of the emission is close to that of thermal radiation. In the opposite limit, ℏΩR>>kT, the nanoantenna radiates single photons. In the last case, we demonstrate the possibility of overcoming the radiation intensity of an individual single-photon source. This result opens the possibility of creating a high-intensity single-photon source.

12.
Opt Express ; 27(8): 10991-11005, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052951

RESUMO

Properties of light sources based on amplified spontaneous emission (ASE) are similar to the properties of lasers in many regards. However, even though ASE has been widely studied, its photon statistics have not been settled. There are no reliable theoretical estimates or unambiguous experimental data for the second-order coherence function of photons that characterizes the coherence properties of a light source. Our computer simulation clearly establishes that, independently of pump power, the light produced by ASE is similar to that of a thermal source. This result lays bare the fundamental difference between ASE radiation and laser radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...