Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 9: 607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946257

RESUMO

HIGHLIGHTS The injection of p-chlorophenylalanine, specific blocker of 5-HT synthesis 3 days before reminder with anisomycin administration prevented forgetting. It is known that the reminder cause reactivation of the long-term memory and it leads to reconsolidation of memory. We showed earlier that the disruption of the reconsolidation of contextual memory in terrestrial snail was caused by anisomycin, the inhibitor of protein syntheses (Gainutdinova et al., 2005; Balaban et al., 2014). In this paper we investigated the possible changes of the memory reconsolidation under the conditions of serotonin deficit, caused by administration of p-chlorophenylalanine, the inhibitor of tryptophan hydroxylase synthesis (intermediate stage of the synthesis of serotonin). It was shown that the forgetting process for contextual memory after reminder and inhibition of protein synthesis did not occur if the serotonin transmission in nervous system was impaired. This effect was significantly different from the direct action of anisomycin, which blocked the reconsolidation of contextual memory. We concluded that the serotonin system was included to the process of memory reconsolidation.

2.
Front Neurosci ; 11: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790886

RESUMO

Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium ([Formula: see text]) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the [Formula: see text]-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial [Formula: see text]-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial [Formula: see text]-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.

3.
Front Cell Neurosci ; 11: 403, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311833

RESUMO

Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.

4.
Front Behav Neurosci ; 9: 279, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557063

RESUMO

Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3.

5.
Pharmacol Biochem Behav ; 94(1): 37-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19602423

RESUMO

The effects of antibodies to calcium-binding S100B protein diluted to 10(-12) (LAS100B) on the long-term sensitization in the Helix lucorum snail (neurobiological model of the anxious-depressive state) were evaluated. The administration of LAS100B prior to conditioning of long-term sensitization in the terrestrial snail 10 min prior to the first electric stimulus) prevents strengthening of the defensive reaction of withdrawing the ommatophores (eye tentacles) and the defensive reaction of closing the pneumostome. This effect is termed "protective", as it prevents the conditioning of long-term sensitization. At the same time, snails given an injection of saline developed long-term sensitization with a significant strengthening of the defensive reactions of withdrawing the ommatophores and closing the pneumostome. When LAS100B was administered before long-term sensitization in advance, the membrane and threshold potentials of premotor interneurons, which regulate defensive behaviour, decreased to a significantly lesser extent compared to the long-term sensitization arm. It is possible that the "protective" effect is linked to the mechanisms of maintaining the membrane potential and changes in extra- and intracellular balance of calcium-binding S100B protein.


Assuntos
Anticorpos/administração & dosagem , Comportamento Animal , Condicionamento Clássico , Caracois Helix/fisiologia , Fatores de Crescimento Neural/fisiologia , Reflexo , Proteínas S100/fisiologia , Potenciais de Ação , Análise de Variância , Animais , Estimulação Elétrica , Interneurônios/fisiologia , Locomoção , Potenciais da Membrana , Fatores de Crescimento Neural/imunologia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/imunologia , Limiar Sensorial , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...