Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 840: 156654, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35700776

RESUMO

Most methods for mapping groundwater vulnerability are based on the excessively simplistic approach that aquifer recharge is produced by vertical infiltration. The novel Land Use-Intrinsic Vulnerability (LU-IV) procedure assesses groundwater vulnerability to nitrate pollution over the entire territory, including aquifers catchment areas. In this research, it was analysed if the delineation of nitrate vulnerable zones (NVZs) would be improved by introducing a new parameter representing the risk associated with soil permeability (parameter S) in the procedure. Different versions of parameter S were tested: S_HC (risk associated with soil hydraulic conductivity), S_St+G+S (risk associated with the stone, gravel and sand fraction of the soil) and S_C (risk associated with the clay fraction). The study was undertaken in the catchment areas of the Oja and Tirón alluvial aquifers (Spain). The efficacy of the following six models was compared: Model 1 (original LU-IV procedure), Model 2 (LU-IV' procedure using parameter S_HC), Model 3 (LU-IV' procedure using parameter S_St+G+S), Model 4 (LU-IV' procedure using parameter S_C), Model 5 (LU-DRASTIC-COP procedure, based on DRASTIC-COP method), and Model 6 (designated NVZ). Catchment scale validations of the six models showed similar, highly significant correlations between the percent coverages of the estimated NVZs and those of the alluvial areas polluted by nitrate for Models 1 to 4. Models 5 and 6 did not show any significant results. In light of these results, Models 1 to 4 were considered the best predictors of nitrate pollution and the best methods for NVZ delineation. Results support the idea that including a parameter S in the LU-IV' procedure is not essential since equivalent results were obtained from the original LU-IV procedure. So, the LU-IV procedure should be considered the best and simplest method of those tested for accurately delineating NVZs.


Assuntos
Água Subterrânea , Nitratos , Monitoramento Ambiental/métodos , Nitratos/análise , Óxidos de Nitrogênio , Permeabilidade , Solo , Poluição da Água/análise
2.
Sci Total Environ ; 804: 150056, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798720

RESUMO

The role of land use and the physical environment in N and P pollution of alluvial aquifers was analysed at three levels of information: (1) aquifer (N and P in groundwater), (2) soil transect (potentially leachable N and P in the soil solution) and (3) aquifer's catchment area. The study was carried out in the Oja and Tirón alluvial aquifers and their catchment areas (northern Spain). Nitrate was the dominant N form, both in groundwater and the soil solution of aquifers' catchment areas. Orthophosphate and organic-P were the codominant P forms in the aquifers. Orthophosphate was the main form in the soil solution. During the period 2005-2017 no significant decrease in nitrate pollution was observed, suggesting the need to review current Nitrate Vulnerable Zone (NVZ) designations. Since nitrate is highly mobile, it tended to accumulate in stagnation zones at the lower reaches of the aquifers. P did not accumulate in the same zones due to its low solubility. Principal component analyses (PCAs) of the aquifers, soil transects and aquifers' catchment areas revealed that the observation scale influences the environmental factors that can be detected as intervening in groundwater pollution. At the aquifer scale, links were found between nitrates and land use, topographic, hydrogeological and climatic factors. The protective effect of natural areas against nitrate pollution was noteworthy, while agriculture was associated with pollution. At the soil transect scale, an altitudinal gradient governed soil particle size distribution and land use, separating mountain forest soils from agricultural soils. The negative relationship between clay contents vs. nitrate and orthophosphate in the soil solution pointed to a regulatory role of clay. At the catchment scale, the size and physical characteristics of the catchments and land use distribution determined macronutrient availability in the soil solution and, in turn, N and P groundwater distribution.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nitratos/análise , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...