Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202575

RESUMO

Nanomaterials are integrated within consumer products to enhance specific properties of interest. Their release throughout the lifecycle of nano-enabled products raises concerns; specifically, mechanical strains can lead to the generation of fragmented materials containing nanomaterials. We investigated the potential release of single-walled carbon nanotubes (SWCNTs-brand TUBALL™) from epoxy composite materials. A pin-on-disk-type tribometer was used for the accelerated mechanical aging of the nanocomposites. A pristine nanocomposite material, abraded material and debris obtained from the abrasion in the tribometer were analyzed by Raman spectroscopy. The airborne-produced particles were captured using particle collectors. Stat Peel's Identifier C2 system was used to monitor the SWCNT content of respirable particles produced during the abrasion test. The SWCNT amounts found were below the LoQ. The Raman spectra conducted on the Stat Peel filters helped identify the presence of free SWCNTs released from the epoxy matrix, although they were notably scarce. Raman spectroscopy has been proved to be a crucial technique for the identification, characterization and assessment of structural changes and degradation in SWCNTs that occurred during the abrasion experiments.

2.
Chemistry ; 29(34): e202300568, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37009778

RESUMO

In this work, we present the structural, optical and photocatalytic properties of CdS semiconducting nanostructures, doped with palladium- and cobalt-based species. XRD analysis, corroborated by Raman and XPS, demonstrated the growth of CdS crystallites in the hexagonal structure, whereas solvothermal conversion of neat precursor metal salts resulted in the formation of metallic Pd and cobalt oxide, respectively. Scanning electron microscopy imaging certified the dendritic structure of hybrids, especially in the case where CdS was grown in the presence of either palladium- or cobalt-based nanoparticles. XPS surface analysis revealed that a major fraction of metallic Pd nanoparticles was converted to PdO during the in situ growth of CdS nanoparticles. The oxidation of Pd nanoparticles could be ascribed to chemisorption of oxygen phases onto the metal surface. The presence of cocatalyst nanoparticles resulted in an appreciable shift of the absorption edge of the ternary hybrids by about 50 nm. The optimized hybrid was found to photodegrade Orange G dye almost quantitatively within 2 h, by simulated solar light irradiation. Scavenging experiments revealed that hydroxy radicals were the main transient intermediate, leading to the oxidative degradation of the dye.

3.
Int J Biol Macromol ; 226: 1500-1514, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511266

RESUMO

In the current study, a mixed microbial culture (MMC) of polyhydroxyalkanoates (PHAs) producers was developed under nutrient stress and was assessed as biocatalyst for the production of high-yielding PHAs from fermented (acidified) discarded fruit juices (DFJ). The structure of the MMC was analyzed periodically to determine its microbial dynamics, revealing that Zoogloae sp. dominated throughout the operation of the system. The efficiency of PHAs production from the MMC was further optimized in batch mode by altering the ratio of C to N, the ratio of carbon sources (propionate and butyrate), and the initial pH, and subsequently different fermentation mixtures of acidified DFJ were assessed as substrates at optimal conditions. Upon solvent extraction, the properties of recovered PHAs were analyzed, showing that in all cases P(3HB-co-3HV) was produced, with Tm ranging from 90.5 to 168.8 °C, and maximum obtained yields 54.61 ± 4.31 % and 43.27 ± 2.13 %, from synthetic substrates and DFJ, respectively. Overall, it was shown that the developed MMC can be efficiently applied as biocatalyst for the exploitation of sugary wastewaters, such as DFJ, towards bio-based and biodegradable plastics bearing the required properties to substitute fossil plastics, into the concept of a circular economy.


Assuntos
Poli-Hidroxialcanoatos , Zoogloea , Zoogloea/metabolismo , Carbono , Sucos de Frutas e Vegetais , Fermentação , Bactérias/metabolismo
4.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433089

RESUMO

Wood and wood-based products are extensively used in the building sector due to their interesting combination of properties. Fire safety and fire spread, however, are of utmost concern for the protection of buildings. Therefore, in timber structures, wood must be treated with fire-retardant materials in order to improve its reaction to fire. This article highlights the flame retardancy of novel hybrid organic-inorganic halogen-free coatings applied on plywood substrates. For this purpose, either a huntite-rich mineral (H5) or its modified nano-Mg (OH)2 type form (H5-m), acting as an inorganic (nano) filler, was functionalized with reactive oligomers (ROs) and incorporated into a waterborne polymeric matrix. A water-soluble polymer (P (SSNa-co-GMAx)), combining its hydrophilic nature with functional epoxide groups, was used as the reactive oligomer in order to enhance the compatibility between the filler and the matrix. Among various coating compositions, the system composed of 13% polymeric matrix, 73% H5 and 14% ROs, which provided the best coating quality and flame retardancy, was selected for the coating of plywood on a larger scale in one or two layers. The results indicated that the novel plywood coating systems with the addition of ecological coating formulations (WF-13, WF-14 and WF-15), prepared at two layers, reached Euroclass B according to EN13501-1, which is the best possible for fire systems applied to wood.

5.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364229

RESUMO

The global trend in restrictions on pollutant emissions requires the use of catalytic converters in the automotive industry. Noble metals belonging to the platinum group metals (PGMs, platinum, palladium, and rhodium) are currently used for autocatalysts. However, recent efforts focus on the development of new catalytic converters that combine high activity and reduced cost, attracting the interest of the automotive industry. Among them, the partial substitution of PGMs by abundant non-PGMs (transition metals such as copper) seems to be a promising alternative. The PROMETHEUS catalyst (PROM100) is a polymetallic nanosized copper-based catalyst for automotives prepared by a wet impregnation method, using as a carrier an inorganic mixed oxide (CeO2-ZrO2) exhibiting elevated oxygen storage capacity. On the other hand, catalyst deactivation or ageing is defined as the process in which the structure and state of the catalyst change, leading to the loss of the catalyst's active sites with a subsequent decrease in the catalyst's performance, significantly affecting the emissions of the catalyst. The main scope of this research is to investigate in detail the effect of ageing on this low-cost, effective catalyst. To that end, a detailed characterization has been performed with a train of methods, such as SEM, Raman, XRD, XRF, BET and XPS, to both ceria-zirconia mixed inorganic oxide support (CZ-fresh and -aged) and to the copper-based catalyst (PROM100-fresh and -aged), revealing the impact of ageing on catalytic efficiency. It was found that ageing affects the Ce-Zr mixed oxide structure by initiating the formation of distinct ZrO2 and CeO2 structures monitored by Raman and XRD. In addition, it crucially affects the morphology of the sample by reducing the surface area by a factor of nearly two orders of magnitude and increasing particle size as indicated by BET and SEM due to sintering. Finally, the Pd concentration was found to be considerably reduced from the material's surface as suggested by XPS data. The above-mentioned alterations observed after ageing increased the light-off temperatures by more than 175 °C, compared to the fresh sample, without affecting the overall efficiency of the catalyst for CO and CH4 oxidation reactions. Metal particle and CeZr carrier sintering, washcoat loss as well as partial metal encapsulation by Cu and/or CeZrO4 are identified as the main causes for the deactivation after hydrothermal ageing.

6.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889657

RESUMO

In the current study, we propose a simple hydrothermal pathway to synthesize nano-structured Mg(OH)2 after application of thermal decomposition followed by hydration of commercial minerals based on hydromagnesite and huntite. The synthesis of nano-materials is performed without the use of any catalyst. The effect of decomposition temperature on the hydrothermal synthesis of Mg(OH)2 is extensively studied. It is shown that the morphology of resulting structures consists typically of particles ~200 nm in diameter and ~10 nm in thickness. Study of the structure at the molecular level designates the composition and supports the nano-sized characteristics of the produced materials. The associated thermal properties combined with the corresponding optical properties suggest that the material may be used as a flame retardant filler with enhanced transparency. In this concept, the flame retardancy of composite coatings containing the produced nano-sized Mg(OH)2 was examined in terms of limiting oxygen index (LOI), i.e., the minimum concentration of oxygen that just supports flaming combustion.

7.
Chem Commun (Camb) ; 58(4): 521-524, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908051

RESUMO

In this study, a simple, fast, one-pot approach for the isolation of nanowires (NWs) in coordination chemistry is reported. Nanowires (NWs) of spin-crossover (SCO) materials are extremely rare. Here, an innovative and easy synthetic process was developed to prepare NWs of a switchable polymorph of the known complex trans-[Fe(NCS)2(abpt)2] using a wet-chemistry approach for the first time; abpt is the bidentate chelating ligand 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole. The remarkable smoothness of the high-spin to low-spin transition, monitored through variable-temperature (300-80 K) Raman microscopy, compared with the sharp transition exhibited by the polycrystalline material, demonstrates the effect of the topological properties on the physical phenomena of the system.

8.
Sci Rep ; 11(1): 20299, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645874

RESUMO

The purpose of the present study was to analyze normal and degenerated menisci with Raman methodology on thin sections of formalin fixed paraffin embedding tissues and to correlate the Raman findings with the grade of meniscus degeneration. Menisci (n = 27) were removed from human knee joints after total knee replacement or meniscectomy. Following routine histopathological analysis to determine the grade of meniscal lesions obtained from healthy and degenerated formaline fixed paraffin embedded (FFPE) meniscal sections, Raman polarization approach was applied to evaluate the orientation of collagen fibrils in different levels of the same 5 µm thick FFPE meniscal tissue sections, used for histopathological assessment. We collected Raman spectra in two different polarization geometries, v-HH and v-VV, and calculated the mean value of the v-HH/v-VV intensity ratio of two Raman bands, sensitive and non-sensitive to the molecular orientation. The collagen specific amide I band at 1665 cm-1, has the higher sensitivity dependence on the Raman polarization. The mean values of ratio v-HH/v-VV of the 1665 cm-1 peak intensity was significantly higher in healthy, mean ± SD: 2.56 ± 0.46, compared to degenerated menisci, mean ± SD: 1.85 ± 0.42 (p = 0.0014). The mean values of v-HH/v-VV intensity ratio were 2.18 and 1.50 for low and high degenerated menisci, respectively (p < 0.0001). The difference of peak intensities in the two laser polarizations is decreased in the degenerated meniscus; this difference is diminishing as the degeneration increases. The v-HH/v-VV ratio was also of significant difference in low as compared to control and high grade meniscus lesions (p = 0.036 and p < 0.0001, respectively) offering valuable information for the approach of its biology and function. In the present study we showed that the 5 µm thick sections can be used for Raman analysis of meniscal tissue with great reliability, in terms of sensitivity, specificity, false-negative and false-positive results. Our data introduce the interesting hypothesis that compact portable Raman microscopy on tissue sections can be used intra-operatively for fast diagnosis and hence, accurate procedure design in the operating room.


Assuntos
Colágeno/química , Meniscos Tibiais/fisiopatologia , Análise Espectral Raman/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Artroplastia do Joelho , Diagnóstico Diferencial , Matriz Extracelular , Reações Falso-Positivas , Feminino , Humanos , Masculino , Meniscectomia , Menisco/cirurgia , Microscopia , Pessoa de Meia-Idade , Ortopedia , Osteoartrite do Joelho/patologia , Parafina/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Chemistry ; 27(63): 15806-15814, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585791

RESUMO

Among the various organic pollutants and industrial chemicals, 4-nitrophenol has been one of the most monitored substances in aqueous environments, due to its enhanced solubility in such systems. This research reports for the first time the microwave-assisted synthesis of CdS/carbon/MoSx hybrids and the subsequent utilization of such systems as photocatalysts for 4-nitrophenol degradation. The hybrids demonstrated a variable photocatalytic activity, by using a variety of organic substances as precursors for the solvothermal carbonization step. By using ascorbic acid as precursor, the corresponding ternary composite exhibited excellent photocatalytic activity, with the 4-nitrophenol concentration been almost quantitatively decayed within 45 min of irradiation. This could be ascribed due to the generation of a high population of heterojunctions as well as the chemical speciation of Mo-based nanostructures. Such ternary hybrids may be utilized as potential photocatalytic systems in processes, where removal of toxic water-soluble substances is the key issue.


Assuntos
Carbono , Nanoestruturas , Catálise , Nitrofenóis
10.
Biomaterials ; 273: 120820, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872857

RESUMO

Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteum-derived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated. Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin. Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.


Assuntos
Cartilagem Articular , Organoides , Animais , Colágeno Tipo II , Camundongos , Camundongos Nus , Engenharia Tecidual , Alicerces Teciduais
11.
Polymers (Basel) ; 12(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171669

RESUMO

Hybrid polymeric materials incorporating carbon nanostructures or inorganic constituents stand as a promising class of materials exhibiting distinct but also complementary features. Carbon nanotubes have been proposed as unique candidates for polymer reinforcement; however, sustained efforts are further needed in order to make full use of their potential. The final properties of the reinforced polymer are controlled in part by the morphology and the eventual molecular orientation of the polymer matrix. In the present study, multiwall carbon nanotubes (MWCNTs) were utilized in order to reinforce polyethylene terephthalate (PET) composites. The effect of CNTs on the crystallization and the orientation of the structurally hybridized polymeric material has been investigated from the perspective of assessing their impact on the final properties of a relevant nanocomposite product. Functionalized MWCNTs were used to achieve their optimal dispersion in the polymer matrix. The physical properties of the composites (i.e., crystallinity and orientation) were characterized via differential scanning calorimetry, X-ray diffraction, and polarized Raman microscopy. The addition of well-dispersed CNTs acted as a nucleation agent, increasing the crystallization of the polyethylene terephthalate matrix and differentiating the orientation of both CNTs and macromolecular chains.

12.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527060

RESUMO

BaTiO3 is one of the most widely used ceramic components in capacitor formulation due to its exceptional ferroelectric properties. The structural transition from the ferroelectric tetragonal to the paraelectric cubic phase has been studied in both nano- and micro-BaTiO3 particles. Several experimental techniques were employed for characterization purposes (X-ray diffraction-XRD, laser Raman spectroscopy-LRS, differential scanning calorimetry-DSC and broadband dielectric spectroscopy-BDS). All gave evidence for the structural transition from the polar tetragonal to the non-polar cubic phase in both nano- and micro-BaTiO3 particles. Variation of Full Width at Half Maximum (FWHM) with temperature in XRD peaks was employed for the determination of the critical Curie temperature (Tc). In micro-BaTiO3 particles (Tc) lies close to 120 °C, while in nanoparticles the transition is complicated due to the influence of particles' size. Below (Tc) both phases co-exist in nanoparticles. (Tc) was also determined via the temperature dependence of FWHM and found to be 115 °C. DSC, LRS and BDS provided direct results, indicating the transition in both nano- and micro-BaTiO3 particles. Finally, the 15 parts per hundred resin per weight (phr) BaTiO3/epoxy nanocomposite revealed also the transition through the peak formation at approximately 130 °C in the variation of FWHM with temperature. The present work introduces, for the first time, a qualitative tool for the determination and study of the ferroelectric to paraelectric structural transition in both nano- and micro-ferroelectric particles and in their nanocomposites. Moreover, its novelty lies on the effect of crystals' size upon the ferroelectric to the paraelectric phase transition and its influence on physical properties of BaTiO3.


Assuntos
Compostos de Bário/química , Eletrônica , Compostos de Epóxi/química , Nanocompostos/química , Nanopartículas/química , Termodinâmica , Titânio/química , Tamanho da Partícula , Transição de Fase , Análise Espectral Raman , Temperatura
13.
Chemistry ; 26(29): 6643-6651, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32057153

RESUMO

Nanoscale two-dimensional nanostructures have shown great potential as functional components in photocatalysis. Here, investigations on the synthesis of heterostructured hybrids, comprised of 0D CdS nanoparticles as semiconductor and 2D/2D graphene/MoSx as co-catalyst, are reported. The approach involves a rapid microwave-assisted reaction in autoclave conditions, by adopting either a one-step or a two-step protocol. The chemical speciation of the nanocomposites was found to depend strongly on the compounding conditions of the precursor substances. The photocatalytic activity was assessed by monitoring the photodegradation rate of 4-nitrophenol in solution using simulated solar light irradiation. The photocatalytic activity of the hybrids may be attributed to a combination of beneficial characteristics, strongly related to the chemical speciation of the composite components. Moreover, intimate contacts of the latter result in efficient heterojunctions. Overall, the present study provides valuable insight into the development of functional heterostructured photocatalysts comprised of two-dimensional nanomaterials.

14.
Inorg Chem ; 58(8): 5183-5195, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30916940

RESUMO

The spin-crossover (SCO) polymorph B (complex 1) of the known compound [FeII{N(CN)2}2(abpt)2], where abpt is 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, has been prepared in three different particle sizes averaging ∼300 (sample 1a), ∼80 (sample 1b), and ∼20 nm (sample 1c). Two independent octahedral molecules possessing Fe1 and Fe2 were found to be present in the crystal of B. Magnetostructural relationships had established that at room temperature both FeII sites are in the high-spin state (HS-HS), whereas a decrease in the temperature to 90 K induces the complete high-spin to low-spin conversion of the Fe1 site, with Fe2 remaining in the high-spin state (LS-HS). The three samples have been characterized by elemental analyses, ATR spectra, solution UV/vis spectra (to exclude resonance Raman effects) and powder X-ray diffraction patterns, while their morphological characteristics have been examined by scanning electron microscopy (SEM). The SCO behavior of the originally prepared sample 1a has been monitored in detail by variable-temperature Raman studies in the 300-80 K range using mainly low-frequency ν(Fe-N) and δ(NFeN) modes and the ν(C≡N) mode of the axial dicyanamido groups as spin-sensitive vibrations. The new peaks that appear in the low-temperature Raman spectra of the LS-HS form of the complex are reproduced in the calculated spectrum of the LS state of [FeII{N(CN)2}2(abpt)2]. The influence of the average particle size on the SCO properties of 1 has also been studied by variable-temperature Raman spectra. The studies indicate that, during the HS-HS → LS-HS transition, the latter form of the complex appears at higher temperatures for the smaller particles; the T1/2 shift accomplished by manipulating the particle size within a range of roughly 1 order of magnitude (300-20 nm) may be as high as ∼30 K. The SCO features of 1, as deduced from the Raman study, are in excellent agreement with those derived from a traditional variable-temperature magnetic susceptibility study, indicating the utility of the former.

15.
RSC Adv ; 8(51): 29062-29070, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35547969

RESUMO

Surface Enhanced Raman Spectroscopy (SERS) belongs to the techniques of ultra-sensitive chemical analysis and involves both identification and quantification of molecular species. Despite the fact that theoretically derived enhancement factors imply that even single molecules may be identified, which in some cases has indeed been experimentally observed, the application of this specific technique as an analytical tool is still an open field of research due to the need for reproducible, stable and simple to prepare SERS active substrates. The current work attempts to contribute to the already established knowledge on the substrates of metallic nanostructured films by a systematic study on the optimal conditions required for the detection of a specifically selected (model) material, the antitumor drug mitoxantrone (MTX). Au thin film deposition on Si substrates, by sputtering followed by solid state thermal dewetting is a facile and reproducible way to prepare Au nanoparticles with the desired particle size distribution. This offers control over their optical - plasmon resonance - properties that can be efficiently tailored to the prerequisites of the resonance Raman conditions, associated to the species under inspection, which is a supplement to the overall enhancement scattering factor. Furthermore, this work attempts to confirm the quantification capabilities of SERS, via the aforementioned substrates, in view of extending SERS applications to food safety, biosensors etc.

16.
Polymers (Basel) ; 9(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970750

RESUMO

The conformation of polymer chains under confinement is investigated in intercalated polymer/layered silicate nanocomposites. Hydrophilic poly(ethylene oxide)/sodium montmorillonite, PEO/Na⁺-MMT, hybrids were prepared utilizing melt intercalation with compositions where the polymer chains are mostly within the ~1 nm galleries of the inorganic material. The polymer chains are completely amorphous in all compositions even at temperatures where the bulk polymer is highly crystalline. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is utilized to investigate the conformation of the polymer chains over a broad range of temperatures from below to much higher than the bulk polymer melting temperature. A systematic increase of the gauche conformation relatively to the trans is found with decreasing polymer content both for the C⁻C and the C⁻O bonds that exist along the PEO backbone indicating that the severe confinement and the proximity to the inorganic surfaces results in a more disordered state of the polymer.

17.
Nanoscale ; 8(5): 2908-17, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26780848

RESUMO

We report on the effect of the degree of oxidation on the broadband non-linear optical response and magnetic behavior of graphene oxide, as well as on a route for obtaining reduced graphene oxide with enhanced optical properties without sacrificing the high dispersibility of the parent graphene oxide. As more sp(3) states evolved with the rise in oxidation degree, it turned out that the sp(2)/sp(3) fraction and sp(2) clustering are crucial parameters for tuning the broadband non-linear optical absorption over a wide range from ps to ns laser pulses for both visible and infrared laser irradiation. This was clearly confirmed by two different approaches, namely by a synthetic route through the gradual oxidation of graphene oxide from 1 to 3 oxidizing cycles, and reversely by in situ reduction of graphene oxide by UV laser irradiation. Furthermore, as the sp(3) states carry localized magnetic moments, ferromagnetic ordering is observed at low temperatures. The magnetization and temperature at which ferromagnetic ordering evolves are found to increase on increasing the oxidation degree. The tuning of non-linear optical and magnetic properties of graphene oxide by oxidation/reduction thus provides an easy way to endow graphene oxide with tunable physical features highly required in both optoelectronics and spintronics applications.

18.
Dent Mater ; 30(12): e306-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24993809

RESUMO

OBJECTIVES: Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. METHODS: One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (P<0.05). The variability of the flexural strength values was analyzed using the two-parameter Weibull distribution function, which was applied for the estimation of Weibull modulus (m) and characteristic strength (σ0). The crystalline phase polymorphs of the materials (tetragonal, t, and monoclinic, m, zirconia) were investigated by X-ray diffraction (XRD) analysis, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. RESULTS: A slight increase of the flexural strength after 5h, and a decrease after 10h of aging, was recorded for both ceramics, however statistically significant was for the WI group (P<0.05). Both ceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. SIGNIFICANCE: The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested.


Assuntos
Cerâmica/química , Materiais Dentários/química , Ítrio/química , Zircônio/química , Algoritmos , Cristalografia , Módulo de Elasticidade , Teste de Materiais , Maleabilidade , Probabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
19.
Talanta ; 75(4): 926-36, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18585165

RESUMO

Two different data-fusion strategies are evaluated for the combination of the outputs of combined Raman/X-Ray fluorescence instrument. The studied application deals with the classification of ochre pigments investigated in the field of cultural heritage. The two fusion strategies are: (1) first level fusion: combines raw signals obtained from each technique and (2) second level fusion: combines extracted features provided individually by each technique. Classification tool is partial least squares-discriminant analysis (PLS-DA). Classification results obtained performing different data-fusion strategies are compared with those results obtained performing a single classification model for each data source. The results show that the combination of signal features is the most suitable for a rapid and unique processing of both types of spectra. Benefits and drawbacks of each strategy are also discussed.

20.
Anal Chim Acta ; 611(2): 239-49, 2008 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-18328327

RESUMO

The purpose of this study is to clarify important details about a Cumaean Sibyl painting that is preserved in a private collection. This work, bearing neither signature nor date, has never undergone conservation. It was executed after Domenichino's Cumaean Sibyl, a work known to have been used as a model by many 18th century painters. Investigation of the anonymous artist's painting technique and identification of its constituent materials were facilitated by employing optical microscopy (OM), scanning electron microscopy (SEM/EDS), FTIR and microRaman spectroscopies and high performance liquid chromatography with diode array detection (HPLC-DAD). The painter's palette comprised lead white, yellow ochre, lead-antimonate yellow (Naples yellow), cinnabar, cochineal lake, madder lake, haematite, Prussian blue and carbon black. The detection of Prussian blue (synthesized in 1704 and widely used as artist's pigment after 1750) was decisive in establishing the work's authenticity for, as such, it cannot be attributed either to Domenico Zampieri (1581-1641) or to his apprentices. In addition, the identification of Naples yellow, which prevailed in the period from 1750 to 1850, supports this statement. Nevertheless, its elaborate painting technique strongly suggests an artist greatly influenced by the Renaissance masters. A comparison of its stylistic features with those of the Cumaean Sibyl of Angelica Kauffmann (1741-1807), a prolific 18th century artist known to have studied and to have copied Domenichino's Sibyl, reveals significant similarities between the two in composition and palette. The unsigned Sibyl, therefore, could well be by Kauffmann.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...