Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 93: 104663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37379657

RESUMO

BACKGROUND: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC). METHODS: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38. HexaBody-CD38-induced CDC, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), trogocytosis, and apoptosis were assessed using flow cytometry assays using tumour cell lines, and MM patient samples (CDC). CD38 enzymatic activity was measured using fluorescence spectroscopy. Anti-tumour activity of HexaBody-CD38 was assessed in patient-derived xenograft mouse models in vivo. FINDINGS: HexaBody-CD38 binds a unique epitope on CD38 and induced potent CDC in multiple myeloma (MM), acute myeloid leukaemia (AML), and B-cell non-Hodgkin lymphoma (B-NHL) cells. Anti-tumour activity was confirmed in patient-derived xenograft models in vivo. Sensitivity to HexaBody-CD38 correlated with CD38 expression level and was inversely correlated with expression of complement regulatory proteins. Compared to daratumumab, HexaBody-CD38 showed enhanced CDC in cell lines with lower levels of CD38 expression, without increasing lysis of healthy leukocytes. More effective CDC was also confirmed in primary MM cells. Furthermore, HexaBody-CD38 efficiently induced ADCC, ADCP, trogocytosis, and apoptosis after Fc-crosslinking. Moreover, HexaBody-CD38 strongly inhibited CD38 cyclase activity, which is hypothesized to relieve immune suppression in the tumour microenvironment. INTERPRETATION: Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of HexaBody-CD38 in patients with MM. FUNDING: Genmab.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Microambiente Tumoral
2.
Nanomedicine (Lond) ; 8(7): 1127-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23384701

RESUMO

AIM: The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood cells (RBCs) and compared these with the effects observed after exposure to the novel nanoparticle albumin-bound PTX, marketed as Abraxane®. RESULTS: The authors demonstrate that CrEL is primarily responsible for RBC lysis and induction of phosphatidylserine exposure. Phosphatidylserine-exposing RBCs showed increased association with endothelial cells in culture. The authors also identified CrEL as being responsible for vesiculation of RBCs. This is the first time that excipients have been shown to be involved in microvesicle formation. Microvesicles were taken up by endothelial cells. CONCLUSION: These results offer new insights into the side effect profile of Taxol, which is likely to have implications for patients with erythrocyte disorders. Abraxane did not induce any of these effects on RBCs, indicating that the choice of excipients can have a pronounced influence on the efficacy and side effects of drug molecules.


Assuntos
Eritrócitos/efeitos dos fármacos , Glicerol/análogos & derivados , Paclitaxel/efeitos adversos , Paclitaxel/química , Fosfatidilserinas/efeitos adversos , Fosfatidilserinas/química , Células Cultivadas , Química Farmacêutica , Eritrócitos/citologia , Citometria de Fluxo , Glicerol/efeitos adversos , Glicerol/química , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos
3.
Haematologica ; 97(4): 500-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22102700

RESUMO

BACKGROUND: Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and α(v)-integrin. Phagocytosis via the phosphatidylserine-lactadherin-α(v)-integrin pathway is the acknowledged route for removal of apoptotic innate cells by phagocytes. DESIGN AND METHODS: Endothelial cell phagocytosis of red blood cells was further explored using a more (patho)physiological approach. Red blood cells were exposed to oxidative stress, induced by tert-butyl hydroperoxide. After opsonization with lactadherin, red blood cells were incubated with endothelial cells to study erythrophagocytosis and examine cytotoxicity. RESULTS: Red blood cells exposed to oxidative stress show alterations such as phosphatidylserine exposure and loss of deformability. When incubated with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape ('rounding up'). Increased expression of apoptotic markers indicated that marked erythrophagocytosis has cytotoxic effects. CONCLUSIONS: Activated endothelial cells show significant phagocytosis of phosphatidylserine-exposing and rigid red blood cells under both static and flow conditions. This results in a certain degree of cytotoxicity. We postulate that activated endothelial cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.


Assuntos
Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Células Cultivadas , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise , Humanos , Fragilidade Osmótica , Estresse Oxidativo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Fosfatidilserinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...