Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37887719

RESUMO

Human papillomaviruses are small DNA tumor viruses that infect cutaneous and mucosal epithelia. The viral lifecycle is linked to the differentiation status of the epithelium. During initial viral infection, the genomes replicate at a low copy number but the mechanism(s) the virus uses to control the copy number during this stage is not known. In this study, we demonstrate that the tyrosine kinase focal adhesion kinase (FAK) binds to and phosphorylates the high-risk viral E2 protein, the key regulator of HPV replication. The depletion of FAK with a specific PROTAC had no effect on viral DNA content in keratinocytes that already maintain HPV-16 and HPV-31 episomes. In contrast, the depletion of FAK significantly increased HPV-16 DNA content in keratinocytes infected with HPV-16 quasiviruses. These data imply that FAK prevents the over-replication of the HPV genome after infection through the interaction and phosphorylation of the E2 protein.

2.
Hum Mol Genet ; 32(23): 3263-3275, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37658769

RESUMO

The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not ß-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Proteína Coatomer/genética , Ligação Proteica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Atrofia Muscular Espinal/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleolina
3.
Pathogens ; 11(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365049

RESUMO

Epidemiological studies have revealed that caffeinated coffee imparts a reduced risk of oropharyngeal cancer, of which human papillomavirus (HPV) is one of the causative agents. Caffeine is a known inhibitor of the DNA damage response (DDR) pathway. We sought to test the effects of caffeine on the early replication of the HPV31 virus. It has been reported that the inhibition of several factors necessary for the DDR during the differentiation-dependent stage of HPV block genome amplification, while the HPV genome maintenance replication was unaffected. We first studied the effects of caffeine in the earliest stages of viral infection. Using pseudo-virions (PsV) expressing an m-Cherry reporter gene and quasi-virions (QsV) containing HPV31 genomes to mediate the infection, we found no evidence that caffeine impeded the viral entry; however, the infected cells displayed a reduced HPV copy number. In contrast, caffeine exposure increased the copy number of HPV31 episomes in the transient transfection assays and in the CIN612E cells that stably maintain viral episomes. There was a concomitant increase in the steady state levels of the HPV31 E1 and E2 transcripts, along with increased E2 loading at the viral origin of replication (ori). These results suggest that the caffeine-mediated inhibition of the DDR reduces viral genome replication in the early stage of infection, in contrast to the maintenance stage, in which the inhibition of the DDR may lead to an increase in viral amplicon replication.

4.
J Virol ; 96(22): e0129522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300937

RESUMO

Bromodomain-containing protein 4 (Brd4) is a member of the bromodomain and extraterminal domain (BET) family of proteins. Brd4 regulates human papillomavirus (HPV) transcription, genome replication, and segregation by binding to the E2 protein. The SETD6 methyltransferase binds to and methylates Brd4 at lysine 99. We investigated the interactions of SETD6 and Brd4 with E2 and their role in HPV transcription. SETD6 coimmunoprecipitated with the E2 transactivation domain, and its depletion in CIN612 episomal cells reduced human papillomavirus type 31 (HPV-31) transcription, whereas depletion of SETD6 in integrated HPV cell lines had no effect on viral gene expression. The mutant Brd4 K99R (bearing a change of K to R at position 99), which cannot be methylated by SETD6, displayed decreased binding to HPV-31 E2, suggesting that SETD6 methylation of Brd4 also influences E2 association with the Brd4 protein. Using chromatin immunoprecipitation, SETD6 was detected at the enhancer region of the HPV long control region. We propose that methylation of Brd4 at K99 by SETD6 is an important mechanism for E2-Brd4 association and HPV transcriptional activation. IMPORTANCE Human papillomaviruses (HPV) cause cervical, anogenital, and oral cancers. Brd4 plays an important role in the HPV life cycle. SETD6 was recently shown to methylate Brd4. The current study demonstrates that methylation of Brd4 by SETD6 in HPV-episomal cells is required for the activation of viral transcription. This study illustrates a novel regulatory mechanism involving E2, Brd4, and SETD6 in the HPV life cycle and provides insight into the multiple roles of Brd4 in viral pathogenesis.


Assuntos
Papillomavirus Humano 31 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Metiltransferases , Transcrição Viral , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 31/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Proteínas Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo
5.
Pathogens ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201556

RESUMO

The human papillomavirus (HPV) is a DNA tumor virus that infects cutaneous and mucosal epithelia where high-risk (HR) HPV infections lead to cervical, oropharyngeal, and anogenital cancers. Worldwide, nearly 5% of all cancers are caused by HR HPV. The viral E2 protein is essential for episomal replication throughout the viral lifecycle. The E2 protein is regulated by phosphorylation, acetylation, sumoylation, and ubiquitination. In this mini-review, we summarize the recent advancements made to identify post translational modifications within E2 and their ability to control viral replication.

6.
Neurobiol Aging ; 101: 57-69, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582567

RESUMO

Understanding the cellular processes that lead to Alzheimer's disease (AD) is critical, and one key lies in the genetics of families with histories of AD. Mutations a complex known as COPI were found in families with AD. The COPI complex is involved in protein processing and trafficking. Intriguingly, several recent publications have found components of the COPI complex can affect the metabolism of pathogenic AD proteins. We reduced levels of the COPI subunit α-COP, altering maturation and cleavage of amyloid precursor protein (APP), resulting in decreased release of Aß-42 and decreased accumulation of the AICD. Depletion of α-COP reduced uptake of proteopathic Tau seeds and reduces intracellular Tau self-association. Expression of AD-associated mutant α-COP altered APP processing, resulting in increased release of Aß-42 and increased intracellular Tau aggregation and release of Tau oligomers. These results show that COPI coatomer function modulates processing of both APP and Tau, and expression of AD-associated α-COP confers a toxic gain of function, resulting in potentially pathogenic changes in both APP and Tau.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/fisiologia , Proteína Coatomer/genética , Proteína Coatomer/fisiologia , Mutação/genética , Mutação/fisiologia , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Camundongos
7.
Life Sci Alliance ; 4(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33234679

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug-drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Piridazinas/administração & dosagem , Splicing de RNA/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Fenótipo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Tempo para o Tratamento
8.
Pathogens ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992873

RESUMO

The multi-subunit structural maintenance of chromosomes (SMC) 5/6 complex includes SMC6 and non-SMC element (NSE)3. SMC5/6 is essential for homologous recombination DNA repair and functions as an antiviral factor during hepatitis B (HBV) and herpes simplex-1 (HSV-1) viral infections. Intriguingly, SMC5/6 has been found to associate with high-risk human papillomavirus (HPV) E2 regulatory proteins, but the functions of this interaction and its role during HPV infection remain unclear. Here, we further characterize SMC5/6 interactions with HPV-31 E2 and its role in the HPV life cycle. Co-immunoprecipitation (co-IP) revealed that SMC6 interactions with HPV-31 E2 require the E2 transactivation domain, implying that SMC5/6 interacts with full-length E2. Using chromatin immunoprecipitation, we found that SMC6 is present on HPV-31 episomes at E2 binding sites. Th depletion of SMC6 and NSE3 increased viral replication and transcription in keratinocytes maintaining episomal HPV-31, indicating that SMC5/6 restricts the viral replicative program. SMC6 interactions with E2 were reduced in the presence of HPV-31 E1, suggesting that SMC6 and E1 compete for E2 binding. Our findings demonstrate SMC5/6 functions as a repressor of the viral replicative program and this may involve inhibiting the initiation of viral replication.

9.
Sci Rep ; 10(1): 15517, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968082

RESUMO

Human papillomavirus (HPV) L1 and L2 capsid proteins self-assemble into virions capable of efficiently packaging either its 8 kilobase genome or non-viral DNA. The ability of HPV capsids to package non-viral DNA makes these a useful tool for delivering plasmids to study proteins of interest in a variety of cell types. We describe optimization of current methods and present new protocols for using HPV capsids to deliver non-viral DNA thereby providing an alternative to DNA transfection. Using keratinocyte generated extracellular matrices can enhance infection efficiency in keratinocytes, hepatocytes and neuronal cells. Furthermore, we describe a suspension-based efficient technique for infecting different cell types.


Assuntos
Técnicas de Transferência de Genes , Papillomaviridae/genética , Capsídeo , Proteínas do Capsídeo/genética , Linhagem Celular , Hepatócitos , Humanos , Queratinócitos , Neurônios , Transfecção/métodos
10.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727877

RESUMO

The human papillomavirus (HPV) E2 protein is a key regulator of viral transcription and replication. In this study, we demonstrate that the nonreceptor tyrosine kinase Pyk2 phosphorylates tyrosine 131 in the E2 transactivation domain. Both depletion of Pyk2 and treatment with a Pyk2 kinase inhibitor increased viral DNA content in keratinocytes that maintain viral episomes. The tyrosine-to-glutamic acid (E) mutant Y131E, which may mimic phosphotyrosine, failed to stimulate transient DNA replication, and genomes with this mutation were unable to establish stable episomes in keratinocytes. Using coimmunoprecipitation assays, we demonstrate that the Y131E is defective for binding to the C-terminal motif (CTM) of Bromodomain-containing protein 4 (Brd4). These data imply that HPV replication depends on E2 Y131 interaction with the pTEFb binding domain of Brd4.IMPORTANCE Human papillomaviruses are the major causative agents of cervical, oral, and anal cancers. The present study demonstrates that the Pyk2 tyrosine kinase phosphorylates E2 at tyrosine 131, interfering with genome replication. We provide evidence that phosphorylation of E2 prevents binding to the Brd4-CTM. Our findings add to the understanding of molecular pathways utilized by the virus during its vegetative life cycle and offers insights into the host-virus interactome.


Assuntos
Alphapapillomavirus/fisiologia , Replicação do DNA , DNA Viral/biossíntese , Quinase 2 de Adesão Focal/metabolismo , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Replicação Viral , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Viral/genética , Quinase 2 de Adesão Focal/genética , Células HEK293 , Células HeLa , Humanos , Queratinócitos/virologia , Proteínas Oncogênicas Virais/genética , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493825

RESUMO

Several serine and threonine residues of the papillomavirus early E2 protein have been found to be phosphorylated. In contrast, only one E2 tyrosine phosphorylation site in BPV-1 (tyrosine 102) and one in HPV-16/31 (tyrosine 138) site have been characterized. Between BPV-1 and HPV-31 E2, 8 of the 11 tyrosines are conserved in the N-terminal domain, suggesting that phosphorylation of tyrosines has an essential role in E2 biology. In this study, we examine the effect of Y102 phosphorylation on HPV-31 E2 biology. Y102 proteins mutated either to the potential phospho-mimetic glutamic acid (Y102E) or to the nonphosphorylated homologue phenylalanine (Y102F) remain nuclear; however, Y102E is more associated with the nuclear matrix fraction. This is consistent with the inability of Y102E to bind TopBP1. Both BPV-1 and HPV-31 Y102E are similar in that neither binds the C terminus of Brd4, but in all other aspects the mutant behaves differently between the two families of papillomaviruses. BPV-1 Y102E was unable to bind E1 and did not replicate in a transient in vitro assay, while HPV-31 Y102E binds E1 and was able to replicate, albeit at lower levels than wild type. To examine the effect of E2 mutations under more native-like infection conditions, a neomycin-selectable marker was inserted into L1/L2 of the HPV-31 genome, creating HPV-31neo. This genome was maintained in every cell line tested for at least 50 days posttransfection/infection. Y102E in both transfection and infection conditions was unable to maintain high episome copy numbers in epithelial cell lines.IMPORTANCE Posttranslational modifications by phosphorylation can change protein activities, binding partners, or localization. Tyrosine 102 is conserved between delta papillomavirus BPV-1 and alpha papillomavirus HPV-31 E2. We characterized mutations of HPV-31 E2 for interactions with relevant cellular binding partners and replication in the context of the viral genome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 31/genética , Plasmídeos/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Genoma Viral/genética , Células HEK293 , Papillomavirus Humano 31/patogenicidade , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Plasmídeos/genética , Fatores de Transcrição/metabolismo , Tirosina/genética , Proteínas Virais/fisiologia , Replicação Viral/fisiologia
12.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350070

RESUMO

The papillomavirus (PV) E2 protein is a critical regulator of viral transcription and genome replication. We previously reported that tyrosine (Y) 138 of HPV-31 E2 is phosphorylated by the fibroblast growth factor receptor 3 (FGFR3) kinase. In this study, we generated quasiviruses containing G418-selectable HPV-31 genomes with phosphodeficient phenylalanine mutant E2 Y138F and phosphomimetic glutamic acid mutant Y138E. We observed significantly fewer early viral transcripts immediately after infection with these Y138 mutant genomes even though E2 occupancy at the viral origin was equivalent to that of wild-type E2. Keratinocytes infected with Y138F quasiviruses formed stable colonies, and the genomes were maintained as episomes, while those infected with Y138E quasiviruses did not. We previously reported that the HPV-31 E2 Y138 mutation to glutamic acid did not bind to the Brd4 C-terminal motif (CTM). Here, we demonstrate that HPV-16 E2 Y138E bound to full-length Brd4 but not to the Brd4 CTM. We conclude that association of E2 with the Brd4 CTM is necessary for viral genome replication and suggest that this interaction can be regulated by phosphorylation of E2 Y138.IMPORTANCE Papillomavirus (PV) is a double-stranded DNA tumor virus infecting the cutaneous and mucosal epithelium. The PV E2 protein associates with a number of cellular factors to mediate replication of the HPV genome. Fibroblast growth factor receptor 3 (FGFR3) regulates HPV replication through phosphorylation of tyrosine 138 in the HPV E2 protein. Employing a quasivirus infection model and selection for G418 resistant genomes, we demonstrated that Y138 is a critical residue for Brd4 association and that inability to complex with Brd4 does not support episomal replication.


Assuntos
Papillomavirus Humano 31/metabolismo , Queratinócitos/metabolismo , Infecções por Papillomavirus/metabolismo , Plasmídeos/metabolismo , Proteínas do Envelope Viral/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Mutação de Sentido Incorreto , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Fosforilação , Plasmídeos/genética , Tirosina , Proteínas do Envelope Viral/genética
13.
Biochem Biophys Res Commun ; 514(2): 530-537, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31060774

RESUMO

We report that expression of the α-COP protein rescues disease phenotype in a severe mouse model of Spinal Muscular Atrophy (SMA). Lentiviral particles expressing α-COP were injected directly into the testes of genetically pure mouse strain of interest resulting in infection of the spermatagonial stem cells. α-COP was stably expressed in brain, skeletal muscle, and spinal cord without altering SMN protein levels. SMA mice transgenic for α-COP live significantly longer than their non-transgenic littermates, and showed increased body mass and normal muscle morphology at postnatal day 15. We previously reported that binding between SMN and α-COP is required for restoration of neurite outgrowth in cells lacking SMN, and we report similar finding here. Lentiviral-mediated transgenic expression of SMN where the dilysine domain in exon 2b was mutated was not able to rescue the SMA phenotype despite robust expression of the mutant SMN protein in brain, muscle and spinal cord. These results demonstrate that α-COP is a validated modifier of SMA disease phenotype in a mammalian, vertebrate model and is a potential target for development of future SMN-independent therapeutic interventions.


Assuntos
Proteína Coatomer/genética , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína Coatomer/metabolismo , Modelos Animais de Doenças , Éxons , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/patologia , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Mutação , Fenótipo , Ligação Proteica , Transdução de Sinais , Medula Espinal/patologia , Análise de Sobrevida , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
14.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842331

RESUMO

The papillomavirus (PV) E2 protein coordinates viral transcription and genome replication. Following a strategy to identify amino acids in E2 that are posttranslationally modified, we reported that tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) complexes with and phosphorylates E2, which inhibits viral DNA replication. Here, we present several lines of evidence indicating that tyrosine (Y) 138 of HPV-31 E2 is a substrate of FGFR3. The active form of FGFR3 bound to and phosphorylated the region of amino acids (aa) 107 to 175 in HPV-31 E2. The E2 phenylalanine (F) mutant Y138F displayed reduced FGFR3-induced phosphotyrosine. A constitutive kinase-active FGFR3 inhibited wild-type (WT) E2-induced E1-dependent DNA replication, while the 138F mutant retained activity. The tyrosine to glutamic acid (E) mutant Y138E, which can mimic phosphotyrosine, failed to induce transient DNA replication, although it maintained the ability to bind and localize the viral DNA helicase E1 to the viral origin. The bromodomain-containing protein 4 (Brd4) binds to E2 and is necessary for initiation of viral DNA synthesis. Interestingly, the Y138E protein coimmunoprecipitated with full-length Brd4 but was defective for association with its C-terminal domain (CTD). These results imply that the activity of the FGFR3 kinase in the infected epithelial cell restricts the HPV replication program through phosphorylation of E2 at Y138, which interferes with E2 binding to the Brd4 CTD, and that this interaction is required for initiation of viral DNA synthesis.IMPORTANCE Human papillomaviruses (HPVs) are highly infectious pathogens that commonly infect the oropharynx and uterine cervix. The idea that posttranslational modifications of viral proteins coordinates viral genome replication is less explored. We recently discovered that fibroblast growth factor receptor 3 (FGFR3) phosphorylates the viral E2 protein. The current study demonstrates that FGFR3 phosphorylates E2 at tyrosine 138, which inhibits association with the C-terminal peptide of Brd4. This study illustrates a novel regulatory mechanism of virus-host interaction and provides insight into the role of Brd4 in viral replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia , Proteínas de Ciclo Celular/fisiologia , DNA Helicases/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/fisiologia , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/metabolismo , Fosforilação , Ligação Proteica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Fatores de Transcrição/fisiologia , Tirosina/metabolismo , Replicação Viral/genética
15.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651357

RESUMO

Human papillomavirus (HPV) E2 proteins are integral for the transcription of viral genes and the replication and maintenance of viral genomes in host cells. E2 recruits the viral DNA helicase E1 to the origin. A lysine (K111), highly conserved among almost all papillomavirus (PV) E2 proteins, is a target for P300 (EP300) acetylation and is critical for viral DNA replication (E. J. Quinlan, S. P. Culleton, S. Y. Wu, C. M. Chiang, et al., J Virol 87:1497-1507, 2013, https://doi.org/10.1128/JVI.02771-12; Y. Thomas and E. J. Androphy, J Virol 92:e01912-17, 2018, https://doi.org/10.1128/JVI.01912-17). Since the viral genome exists as a covalently closed circle of double-stranded DNA, topoisomerase 1 (Topo1) is thought to be required for progression of the replication forks. Due to the specific effect of K111 mutations on DNA unwinding (Y. Thomas and E. J. Androphy, J Virol 92:e01912-17, 2018, https://doi.org/10.1128/JVI.01912-17), we demonstrate that the E2 protein targets Topo1 to the viral origin, and this depends on acetylation of K111. The effect was corroborated by functional replication assays, in which higher levels of P300, but not its homolog CBP, caused enhanced replication with wild-type E2 but not the acetylation-defective K111 arginine mutant. These data reveal a novel role for lysine acetylation during viral DNA replication by regulating topoisomerase recruitment to the replication origin.IMPORTANCE Human papillomaviruses affect an estimated 75% of the sexually active adult population in the United States, with 5.5 million new cases emerging every year. More than 200 HPV genotypes have been identified; a subset of them are linked to the development of cancers from these epithelial infections. Specific antiviral medical treatments for infected individuals are not available. This project examines the mechanisms that control viral genome replication and may allow the development of novel therapeutics.


Assuntos
DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Replicação Viral/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA Helicases/genética , Replicação do DNA/genética , DNA Viral/genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Lisina/genética , Camundongos , Replicon/genética
16.
mSphere ; 3(6)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541782

RESUMO

Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts.IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.


Assuntos
DNA Viral/genética , Síndromes de Imunodeficiência/complicações , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA Viral/química , Feminino , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Mucosa/virologia , Técnicas de Amplificação de Ácido Nucleico , Papillomaviridae/genética , Pele/virologia , Adulto Jovem
17.
Virology ; 521: 62-68, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885490

RESUMO

The papillomavirus (PV) E2 protein activates transcription and replication by recruiting cellular proteins and the E1 DNA helicase to their binding sites in the viral genome. We recently demonstrated that phosphorylation of tyrosine 102 in the bovine papillomavirus (BPV-1) E2 protein restricts these activities and that fibroblast growth factor receptor-3 (FGFR3) tyrosine kinase binds PV E2. Expression of FGFR3 decreased viral replication with both wild-type and the phenylalanine substitution at position 102, inferring that another kinase targets Y102. Here we tested FGFR- 1, -2 and -4 for association with PV E2 proteins. FGFR2 but not FGFR1 or FGFR4 co-immunoprecipitated with BPV-1 E2. We found that FGFR2 suppressed replication but did not depend on phosphorylation of BPV-1 Y102. HPV-16 and -31 E2 interacted with FGFR1, -2, and -4. These results imply that the expression and activity of FGF receptors in epithelial cells can regulate the function of E2 in viral replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interações entre Hospedeiro e Microrganismos , Papillomavirus Humano 16/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Fosforilação , Proteínas Tirosina Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/genética , Replicação Viral
18.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142126

RESUMO

The papillomavirus (PV) E2 protein is a sequence-specific DNA binding protein that recruits cellular factors to its genome in infected epithelial cells. E2 also binds to and loads the viral E1 DNA helicase at the origin of replication. Posttranslational modifications (PTMs) of PV E2 have been identified as potential regulators of E2 functions. We recently reported lysine 111 (K111) as a target of p300 acetylation in bovine PV (BPV). The di-lysines at 111 and 112 are conserved in almost all papillomaviruses. We pursued a mutational approach to query the functional significance of lysine in human PV (HPV) E2. Amino acid substitutions that prevent acetylation, including arginine, were unable to stimulate transcription and E1-mediated DNA replication. The arginine K111 mutant retained E2 transcriptional repression, nuclear localization, DNA and chromatin binding, and association with E2 binding partners involved in PV transcription and replication. While the replication-defective E2-K111R mutant recruited E1 to the viral replication origin, surprisingly, unwinding of the duplex DNA did not occur. In contrast, the K111 glutamine (K111Q) mutant increased origin melting and stimulated replication compared to wild-type E2. These experiments reveal a novel activity of E2 necessary for denaturing the viral origin that likely depends on acetylation of highly conserved lysine 111.IMPORTANCE HPV is one of the most common sexually transmitted infections in the United States. Over 200 HPVs have been described, and they manifest in a variety of ways; they can be asymptomatic or can result in benign lesions (papillomas) or progress to malignancy. Although 90% of infections are asymptomatic and resolve easily, HPV16 and -18 alone are responsible for 70% of all cervical cancers, which are almost entirely caused by HPV infection. Interestingly, 60 to 90% of other cancers have been linked to HPV. The goal of this research is to further elucidate the mechanisms that regulate and mediate viral replication.


Assuntos
Proteínas de Ligação a DNA/química , Lisina/química , Proteínas Oncogênicas Virais/química , Papillomaviridae/fisiologia , Replicação Viral , Acetilação , DNA Helicases/metabolismo , Replicação do DNA , Células HeLa , Humanos , Papillomaviridae/genética , Processamento de Proteína Pós-Traducional , Origem de Replicação
19.
PLoS One ; 12(9): e0185079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945765

RESUMO

C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective. DAQ-DcpSi effects were characterized in cells in vitro utilizing DcpS knockdown and 7-methyl analogues as probes for DcpS vs non-DcpS-mediated effects. We also performed analysis of Smn transcript levels, RNA-Seq analysis of the transcriptome and SMN protein in order to identify affected pathways underlying the therapeutic effect, and studied lysosomotropic and non-lysosomotropic DAQ-DCpSi effects in 2B/- SMA mice. Treatment of cells caused modest and transient SMN2 mRNA increases with either no change or a decrease in SMNΔ7 and no change in SMN1 transcripts or SMN protein. RNA-Seq analysis of DAQ-DcpSi-treated N2a cells revealed significant changes in expression (both up and down) of approximately 2,000 genes across a broad range of pathways. Treatment of 2B/- SMA mice with both lysomotropic and non-lysosomotropic DAQ-DcpSi compounds had similar effects on disease phenotype indicating that the therapeutic mechanism of action is not a consequence of lysosomotropism. In striking contrast to the findings in vitro, Smn transcripts were robustly changed in tissues but there was no increase in SMN protein levels in spinal cord. We conclude that DAQ-DcpSi have reproducible benefit in SMA mice and a broad spectrum of biological effects in vitro and in vivo, but these are complex, context specific, and not the result of simple SMN2 transcriptional activation.


Assuntos
Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/enzimologia , Quinazolinas/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/genética , Regiões Promotoras Genéticas , Quinazolinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/deficiência , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
20.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768864

RESUMO

The papillomavirus (PV) E2 protein is a DNA binding, protein interaction platform that recruits viral and host factors necessary for transcription and replication. We recently discovered phosphorylation of a tyrosine (Y102) in bovine PV (BPV) E2. To identify the responsible factor, we tested several candidate tyrosine kinases that are highly expressed in keratinocytes for binding to BPV-1 E2. Fibroblast growth factor receptor 3 (FGFR3) coimmunoprecipitated with the BPV-1 E2 protein, as did human papillomavirus 31 (HPV-31) E2, which also colocalized with FGFR3 within the nucleus. A constitutively active mutant form of FGFR3 decreased BPV-1 and HPV-31 transient replication although this result also occurred in a BPV-1 E2 mutant lacking a previously identified phosphorylation site of interest (Y102). Furthermore, FGFR3 depletion in cell lines that maintain HPV-31 episomes increased viral copy number. These results suggest that FGFR3 kinase activity may regulate the PV reproductive program through phosphorylation of the E2 protein although this is unlikely to occur through the Y102 residue of HPV E2.IMPORTANCE The papillomavirus (PV) is a double-stranded DNA tumor virus infecting cervix, mouth, and throat tissues. The viral protein E2 is responsible for the replication of the virus. Understanding the mechanisms of the replicative life cycle of the virus may bring to light direct targets and treatments against viral infection. We recently found that the fibroblast growth factor receptor 3 (FGFR3) interacts with and mediates PV E2 function through phosphorylation of the E2 protein. Our study suggests that the function of the E2 protein may be regulated through a direct FGFR3 target during the maintenance stage of the PV life cycle.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 31/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Fosfotransferases/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Bovinos , Replicação do DNA , Papillomavirus Humano 31/enzimologia , Humanos , Fosforilação , Plasmídeos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...