Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 8803586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210975

RESUMO

The Internet of Things (IoT) ushers in a new era of communication that depends on a broad range of things and many types of communication technologies to share information. This new age of communication will be characterised by the following characteristics: Because all of the IoT's objects are connected to one another and because they function in environments that are not protected, it poses a significantly greater number of issues, constraints, and challenges than do traditional computing systems. This is due to the fact that traditional computing systems do not have as many interconnected components. Because of this, it is imperative that security be prioritised in a new approach, which is not something that is currently present in conventional computer systems. The Wireless Sensor Network, often known as WSN, and the Mobile Ad hoc Network are two technologies that play significant roles in the process of building an Internet of Things system. These technologies are used in a wide variety of activities, including sensing, environmental monitoring, data collecting, heterogeneous communication techniques, and data processing, amongst others. Because it incorporates characteristics of both MANET and WSN, IoT is susceptible to the same kinds of security issues that affect those other networks. An assault known as a Delegate Entity Attack (DEA) is a subclass of an attack known as a Denial of Service (DoS). The attacker sends an unacceptable number of control packets that have the appearance of being authentic. DoS assaults may take many different forms, and one of those kinds is an SD attack. Because of this, it is far more difficult to recognise this form of attack than a simple one that depletes the battery's capacity. One of the other key challenges that arise in a network during an SD attack is that there is the need to enhance energy management and prolong the lifespan of IoT nodes. This is one of the other significant issues that arise in a network when an SD attack is occurs. It is recommended that you make use of a Random Number Generator with Hierarchical Intrusion Detection System, abbreviated as RNGHID for short. The ecosystem of the Internet of Things is likely to be segmented into a great number of separate sectors and clusters. The HIPS system has been partitioned into two entities, which are referred to as the Delegate Entity (DE) and the Pivotal Entity, in order to identify any nodes in the network that are behaving in an abnormal manner. These entities are known, respectively, as the Delegate Entity and the Pivotal Entity (PE). Once the anomalies have been identified, it will be possible to pinpoint the area of the SD attack torture and the damaging activities that have been taken place. A warning message, generated by the Malicious Node Alert System (MNAS), is broadcast across the network in order to inform the other nodes that the network is under attack. This message classifies the various sorts of attacks based on the results of an algorithm that employs machine learning. The proposed protocol displays various desired properties, such as the capacity to conduct indivisible authentication, rapid authentication, and minimum overhead in both transmission and storage. These are only a few of the desirable attributes.


Assuntos
Internet das Coisas , Redes de Comunicação de Computadores , Segurança Computacional , Ecossistema , Aprendizado de Máquina
2.
Recent Adv Drug Deliv Formul ; 15(1): 59-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602031

RESUMO

BACKGROUND: The application of nanotechnology has been considered a powerful platform in improving the current situation in drug delivery and cancer therapy, especially in targeting the desired site of action. OBJECTIVE: The main objective of the patent review is to survey and review patents from the past ten years that are related to the two particular areas of nanomedicines. METHODS: The patents related to the nanoparticle-based inventions utilized in drug delivery and cancer treatment from 2010 onwards were browsed in databases like USPTO, WIPO, Google Patents, and Free Patents Online. After conducting numerous screening processes, a total of 40 patents were included in the patent analysis. See the PRISMA checklist 2020 checklist. RESULTS: Amongst the selected patents, an overview of various types of nanoparticles is presented in this paper, including polymeric, metallic, silica, lipid-based nanoparticles, quantum dots, carbon nanotubes, and albumin-based nanomedicines. CONCLUSION: Nanomedicines' advantages include improvements in terms of drug delivery, bioavailability, solubility, penetration, and stability of drugs. It is concluded that the utilization of nanoparticles in medicines is essential in the pursuit of better clinical practice.


Assuntos
Nanopartículas , Nanotubos de Carbono , Neoplasias , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias/tratamento farmacológico
3.
Data Brief ; 37: 107208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34189200

RESUMO

With the growth of wireless network technology-based devices, identifying the communication behaviour of wireless connectivity enabled devices, e.g. Internet of Things (IoT) devices, is one of the vital aspects, in managing and securing IoT networks. Initially, devices use frames to connect to the access point on the local area network and then, use packets of typical communication protocols through the access point to communicate over the Internet. Toward this goal, network packet and IEEE 802.11 media access control (MAC) frame analysis may assist in managing IoT networks efficiently, and allow investigation of inclusive behaviour of IoT devices. This paper presents network traffic traces data of D-Link IoT devices from packet and frame levels. Data collection experiment has been conducted in the Network Systems and Signal Processing (NSSP) laboratory at Universiti Brunei Darussalam (UBD). All the required devices, such as IoT devices, workstation, smartphone, laptop, USB Ethernet adapter, and USB WiFi adapter, have been configured accordingly, to capture and store network traffic traces of the 14 IoT devices in the laboratory. These IoT devices were from the same manufacture (D-Link) with different types, such as camera, home-hub, door-window sensor, and smart-plug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...