Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010551

RESUMO

Microalgal species from sewage treatment plant were identified by 18S rRNA sequencing and were explored for total lipids, carbohydrate, and protein contents, to serve as a potential candidate for biorefinery. Seven unicellular microalgae were identified as Chlorella sorokiniana, Dictyosphaerium sp., Graesiella emersonii belonging to Chlorellaceae and Scenedesmus sp., Desmodesmus sp., Tetranephris brasiliensis, and Coelastrella sp. belonging to Scenedesmaceae family. Biochemical assessment of all isolates revealed total lipid content from 17.49 ± 1.41 to 47.35 ± 0.61% w/w, total carbohydrate content from 12.82 ± 0.19 to 64.29 ± 0.63% w/w, and total protein content from 8.55 ± 0.19 to 16.65 ± 0.20% w/w. FAME analysis of extracted lipid was found to be rich in Hexadecane (C16:0), Tetradecane (C17:0), Octadecane (C18:0), Eicosane (C20:0), Tetracosane (C24:0), Pentacosane (C25:0) fatty acids, the presence of which makes excellent candidate for biodiesel. Being rich in lipid, microalgae Chlorella sorokiniana, Coelastrella sp., and Scenedesmus sp. have high potential for biofuels. Due to the presence of high protein content, Scenedesmus sp. and Chlorella sorokiniana can serve as food or feed supplement, whereas the high carbohydrate content of Dictyosphaerium sp., Coelastrella sp., and Scenedesmus sp. makes them an ideal candidate for fermentative production of alcohol and organic acids. Chlorella sp. and Scenedesmus sp., being dominant microalgae across all seasons, demonstrate remarkable resilience for their cultivation in sewage water and utilization of biomass in biorefineries.

2.
Indian J Microbiol ; 50(4): 438-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22282612

RESUMO

Removal of heavy metals (Pb(2+), Zn(2+)) from aqueous solution by dried biomass of Spirulina sp. was investigated. Spirulina rapidly adsorbed appreciable amount of lead and zinc from the aqueous solutions within 15 min of initial contact with the metal solution and exhibited high sequestration of lead and zinc at low equilibrium concentrations. The specific adsorption of both Pb(2+) and Zn(2+) increased at low concentration and decreased when biomass concentration exceeded 0.1 g l(-1). The binding of lead followed Freundlich model of kinetics where as zinc supported Langmuir isotherm for adsorption with their r(2) values of 0.9659 and 0.8723 respectively. The adsorption was strongly pH dependent as the maximum lead biosorption occurred at pH 4 and 10 whereas Zn(2+) adsorption was at pH 8 and 10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...