Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nefrologia (Engl Ed) ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39054239

RESUMO

BACKGROUND AND OBJECTIVE: Extracellular vesicles (EV) reflect the pathophysiological state of their cells of origin and are a reservoir of renal information accessible in urine. When biopsy is not an option, EV present themselves as sentinels of function and damage, providing a non-invasive approach. However, the analysis of EV in urine requires prior isolation, which slows down and hinders transition into clinical practice. The aim of this study is to show the applicability of the "single particle interferometric reflectance imaging sensor" (SP-IRIS) technology through the ExoView® platform for the direct analysis of urine EV and proteins involved in renal function. MATERIALS AND METHODS: The ExoView® technology enables the quantification and phenotyping of EV present in urine and the quantification of their membrane and internal proteins. We have applied this technology to the quantification of urinary EV and their proteins with renal tubular expression, amnionless (AMN) and secreted frizzled-related protein 1 (SFRP1), using only 5 µl of urine. Tubular expression was confirmed by immunohistochemistry. RESULTS: The mean size of the EV analysed was 59 ± 16 nm for those captured by tetraspanin CD63, 61 ± 16 nm for those captured by tetraspanin CD81, and 59 ± 10 for tetraspanin CD9, with CD63 being the majority EV subpopulation in urine (48.92%). The distribution of AMN and SFRP1 in the three capture tetraspanins turned out to be similar for both proteins, being expressed mainly in CD63 (48.23% for AMN and 52.1% for SFRP1). CONCLUSIONS: This work demonstrates the applicability and advantages of the ExoView® technique for the direct analysis of urine EV and their protein content in relation to the renal tubule. The use of minimum volumes, 5 µl, and the total analysis time not exceeding three hours facilitate the transition of EV into daily clinical practice as sources of diagnostic information.

2.
J Proteome Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594816

RESUMO

Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.

3.
Clin Kidney J ; 16(3): 447-455, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36865017

RESUMO

Kidney transplantation is the treatment of choice for patients with kidney failure. Priority on the waiting list and optimal donor-recipient matching are guided by mathematical scores, clinical variables and macroscopic observation of the donated organ. Despite the increasing rates of successful kidney transplantation, maximizing the number of available organs while ensuring the optimum long-term performance of the transplanted kidney remains both key and challenging, and no unequivocal markers are available for clinical decision making. Moreover, the majority of studies performed thus far has focused on the risk of primary non-function and delayed graft function and subsequent survival and have mainly analysed recipients' samples. Given the increasing use of donors with expanded criteria and/or cardiac death, predicting whether grafts will provide sufficient kidney function is increasingly more challenging. Here we compile the available tools for pre-transplant kidney evaluation and summarize the latest molecular data from donors that may predict short-term (immediate or delayed graft function), medium-term (6 months) and long-term (≥12 months) kidney function. The use of liquid biopsy (urine, serum, plasma) to overcome the limitations of the pre-transplant histological evaluation is proposed. Novel molecules and approaches such as the use of urinary extracellular vesicles are also reviewed and discussed, along with directions for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...