Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9631, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541818

RESUMO

High temperature studies of spin Hall effect have often been neglected despite its profound significance in real-world devices. In this work, high temperature spin torque ferromagnetic resonance measurement was performed to evaluate the effects of temperature on the Gilbert damping and spin Hall efficiency of PtxCu1-x. When the temperature was varied from 300 K to 407 K, the Gilbert damping was relatively stable with a change of 4% at composition x = 66%. Alloying Pt and Cu improved the spin Hall efficiency of Pt75Cu25/Co/Ta by 29% to a value of 0.31 ± 0.03 at 407 K. However, the critical switching current density is dependent on the ratio between the Gilbert damping and spin Hall efficiency and the smallest value was observed when x = 47%. It was found that at this concentration, the spin transparency was at its highest at 0.85 ± 0.09 hence indicating the importance of interfacial transparency for energy efficient devices at elevated temperature.

2.
Sci Rep ; 9(1): 17534, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754270

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 7369, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089209

RESUMO

The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...