Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(36)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861984

RESUMO

Electric field control of spin-orbit torque (SOT) exhibits promising potential in advanced spintronic devices through interfacial modulation. In this work, we investigate the influence of electric field and interfacial oxidation on SOT efficiency in annealed Ta/CoFeB/HfOxheterostructures. By varying annealing temperatures, the damping-like SOT efficiency reaches its peak at the annealing temperature of 320 °C, with an 80% field-free magnetization switching ratio induced by SOT having been demonstrated. This enhancement is ascribed to the annealing-induced modulation of oxygen ion migration at the CoFeB/HfOxinterface. By applying voltages across the Ta/CoFeB/HfOxheterostructures, which drives the O2‒migration across the interface, a reversible, bipolar, and non-volatile modulation of SOT efficiency was observed. The collective influence of annealing temperature and electric field effects on SOT carried out in this work provides an effective approach into facilitating the optimization and control of SOT in spintronic devices.

2.
Nanoscale ; 15(42): 17076-17084, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37847400

RESUMO

Due to their significant resemblance to the biological brain, spiking neural networks (SNNs) show promise in handling spatiotemporal information with high time and energy efficiency. Two-terminal memristors have the capability to achieve both synaptic and neuronal functions; however, such memristors face asynchronous programming/reading operation issues. Here, a three-terminal memristor (3TM) based on oxygen ion migration is developed to function as both a synapse and a neuron. We demonstrate short-term plasticity such as pair-pulse facilitation and high-pass dynamic filtering in our devices. Additionally, a 'learning-forgetting-relearning' behavior is successfully mimicked, with lower power required for the relearning process than the first learning. Furthermore, by leveraging the short-term dynamics, the leaky-integrate-and-fire neuronal model is emulated by the 3TM without adopting an external capacitor to obtain the leakage property. The proposed bi-functional 3TM offers more process compatibility for integrating synaptic and neuronal components in the hardware implementation of an SNN.


Assuntos
Redes Neurais de Computação , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses , Encéfalo
3.
Sci Rep ; 13(1): 16000, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749156

RESUMO

We investigate the functionality of NbOx-based selector devices on a flexible substrate. It was observed that the failure mechanism of cyclic tensile strain is from the disruption of atom arrangements, which essentially led to the crack formation of the film. When under cyclic compressive strain, buckling delamination of the film occurs as the compressed films have debonded from their neighboring layers. By implementing an annealing process after the strain-induced degradation, recovery of the device is observed with reduced threshold and hold voltages. The physical mechanism of the device is investigated through Poole-Frenkel mechanism fitting, which provides insights into the switching behavior after mechanical strain and annealing process. The result demonstrates the potential of the NbOx device in flexible electronics applications with a high endurance of up to 105 cycles of cyclic bending strain and the recovery of the device after degradation.

4.
ACS Nano ; 15(5): 8319-8327, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33970603

RESUMO

Current-induced magnetization switching by spin-orbit torque generated in heavy metals offers an enticing realm for energy-efficient memory and logic devices. The spin Hall efficiency is a key parameter in describing the generation of spin current. Recent findings have reported enhancement of spin Hall efficiency by mechanical strain, but its origin remains elusive. Here, we demonstrate a 45% increase in spin Hall efficiency in the platinum/cobalt (Pt/Co) bilayer, of which 78% of the enhancement was preserved even after the strain was removed. Spin transparency and X-ray magnetic circular dichroism revealed that the enhancement was attributed to a bulk effect in the Pt layer. This was further confirmed by the linear relationship between the spin Hall efficiency and resistivity, which indicates an increase in skew-scattering. These findings shed light on the origin of enhancement and are promising in shaping future utilization of mechanical strain for energy-efficient devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...