Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 257: 19-30, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29925466

RESUMO

Large quantities of sludge is generated from different sections of a wastewater treatment plant operation. Sludge can be a solid, semisolid or liquid muddy residual material. Understanding the flow behaviour and rheological properties of sewage sludge at different sections of a wastewater treatment plant (WWTP) is important for the design of pumping system, mixing, hydrodynamics and mass transfer rates of various sludge treatment units, optimization of conditioning dose and for sustainable sludge management. The current article provides a comprehensive review on up to date literature information on rheological behaviour of raw primary sludge, excess activated sludge, thickened excess activated sludge, mixture of raw primary and thickened excess activated sludge (mixed sludge), digested sludge, and biosolid under the influence of different operating parameters and their impacts on process performance. The influences of various process parameters such as solid concentration, temperature, pH, floc particle size, primary to secondary sludge mixing ratio, aging and conditioning agent doses on the rheological behaviour of sludge from different treatment units of WWTPs are critically analysed here. Yield stress was reported to increase with increasing solid concentration for all types of sludge whereas viscosity showed a decreasing trend with decreasing total solid concentration and percentage of thickened excess activated sludge in the mixture. Temperature showed an inverse relationship with yield stress and viscosity. Viscosity was reported to be decreased with decrease in pH. The effect of various conditioning agents on the rheological behaviour of sludge are also discussed here. The applicability and practical significance of various rheological models such as Bingham, Power Law (Ostwald), Herschel-Bulkley, Casson, Sisko, Careau, and Cross models to experimental rheological characteristics of various sludges were presented here. The reported results on various rheological parameters such as shear stress, yield stress, flow index, infinite, zero-rate viscosity, and flow consistency index of different sludge types obtained from the best fitted model were also compiled here. Conclusions have been drawn from the literature reviewed and few suggestions for future research direction are proposed.

2.
ACS Appl Mater Interfaces ; 8(11): 7184-93, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26937827

RESUMO

Heteroatom (nitrogen and sulfur)-codoped porous carbons (N-S-PCs) with high surface areas and hierarchically porous structures were successfully synthesized via direct pyrolysis of a mixture of glucose, sodium bicarbonate, and thiourea. The resulting N-S-PCs exhibit excellent adsorption abilities and are highly efficient for potassium persulfate activation when employed as catalysts for the oxidative degradation of sulfachloropyridazine (SCP) solutions. The adsorption capacities of N-S-PC-2 (which contains 4.51 atom % nitrogen and 0.22 atom % sulfur and exhibits SBET of 1608 m(2) g(-1)) are 73, 7, and 3 times higher than those of graphene oxide, reduced graphene oxide, and commercial single-walled carbon nanotube, respectively. For oxidation, the reaction rate constant of N-S-PC-2 is 0.28 min(-1). This approach not only contributes to the large-scale production and application of high-quality catalysts in water remediation but also provides an innovative strategy for the production of heteroatom-doped PCs for energy applications.


Assuntos
Carbono/química , Nitrogênio/química , Sulfanilamidas/química , Enxofre/química , Oxirredução , Porosidade
3.
J Colloid Interface Sci ; 468: 176-182, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26845029

RESUMO

Metal-free semiconductors offer a new opportunity for environmental photocatalysis toward a potential breakthrough in high photo efficiency with complete prevention of metal leaching. In this study, graphitic carbon nitride (GCN) modified by oxygen functional groups was synthesized by a hydrothermal treatment of pristine GCN at different temperatures with H2O2. Insights into the emerging characteristics of the modified GCN in photocatalysis were obtained by determining the optical properties, band structure, electrochemical activity and pollutant degradation efficiency. It was found that the introduction of GCN with oxygen functional groups can enhance light absorption and accelerate electron transfer so as to improve the photocatalytic reaction efficiency. The photoinduced reactive radicals and the associated photodegradation were investigated by in situ electron paramagnetic resonance (EPR). The reactive radicals, O2(-) and OH, were responsible for organic degradation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25560258

RESUMO

The solar-photocatalytic degradation mechanisms and kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) using TiO2 have been investigated both individually and combined. The individual solar-photocatalytic degradation of both phenolic compounds showed that the reaction rates follow pseudo-first-order reaction. During the individual photocatalytic degradation of both 4-CP and 2,4-DCP under the same condition of TiO2 (0.5 g L(-1)) and light intensities (1000 mW cm(-2)) different intermediates were detected, three compounds associated with 4-CP (hydroquinone (HQ), phenol (Ph) and 4-chlorocatechol (4-cCat)) and two compounds associated with 2,4-DCP (4-CP and Ph). The photocatalytic degradation of the combined mixture (4-CP and 2,4-DCP) was also investigated at the same conditions and different 2,4-DCP initial concentrations. The results showed that the degradation rate of 4-CP decreases when the 2,4-DCP concentration increases. Furthermore, the intermediates detected were similar to that found in the individual degradation but with high Ph concentration. Therefore, a possible reaction mechanism for degradation of this combined mixture was proposed. Moreover, a modified Langmuir-Hinshelwood (L-H) kinetic model considering all detected intermediates was developed. A good agreement between experimental and estimated results was achieved. This model can be useful for scaling-up purposes more accurately as its considering the intermediates formed, which has a significant effect on degrading the main pollutants (4-CP and 2,4-DCP).


Assuntos
Catecóis/química , Clorofenóis/química , Misturas Complexas/química , Modelos Químicos , Catálise , Cinética , Fotólise , Luz Solar
5.
ACS Appl Mater Interfaces ; 6(22): 19914-23, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25350938

RESUMO

In heterogeneous catalysis for water treatment, feasible recovery of nanocatalysts is crucial to make the process cost-effective and environmentally benign. In this study, we applied two strategies, for example, magnetic separation and hierarchical structure of solid catalysts, to ensure manganese catalysts are readily separable, meanwhile their catalytic performance was retained by the nanosized structure of MnO2 nanosheets or nanorods. ZnFe2O4 was used as the magnetic core and MnO2 corolla-like sphere consisting of nanosheets, and sea-urchin shaped structure made of nanorods, were fabricated by a hydrothermal method at 100 and 140 °C, respectively. Crystalline structure, morphology and textural property of the materials were investigated. The prepared catalysts were able to effectively activate peroxymonosulfate (PMS) to generate sulfate radicals for catalytic oxidation of a typical organic pollutant of phenol. After the heterogeneous catalysis, the catalysts were easily recovered by applying an external magnetic field. The effects of temperature and repeated use on the degradation efficiencies were evaluated. The generation and evolution of sulfate radicals and phenol oxidation were studied using both competitive radical tests and electron paramagnetic resonance (EPR).

6.
J Colloid Interface Sci ; 433: 68-75, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25112914

RESUMO

Magnetic separation is more cost-effective than conventional separation processes in heterogeneous catalysis, especially for ultrafine nanoparticles. Magnetic core/shell nanospheres (MCS, Fe3O4/carbon) were synthesized by a hydrothermal method and their supported manganese oxide nanoparticles (Mn/MCS) were obtained by redox reactions between MCS and potassium permanganate at a low temperature. The materials were analyzed by a variety of characterization techniques such as powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and N2 adsorption/desorption. The Mn/MCS catalysts were able to effectively activate Oxone® for phenol degradation in aqueous solutions. Nitrogen treated MCS supported Mn achieved 100% conversion within 120min. Kinetic studies showed that phenol degradation over supported Mn catalysts follows the first order kinetics. It was also found that the catalysts can be easily separated from the aqueous solutions by an external magnetic field. The Oxone® activation mechanism by Mn/MCS catalysts was discussed and sulfate radicals were suggested to be the primary reactive species generated from peroxymonosulfate (PMS) for phenol catalytic oxidation.

7.
J Colloid Interface Sci ; 407: 467-73, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891446

RESUMO

Spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles were prepared, characterized, and tested in degradation of aqueous phenol in the presence of peroxymonosulfate. It was found that Mn3O4 and Co3O4 nanoparticles are highly effective in heterogeneous activation of peroxymonosulfate to produce sulfate radicals for phenol degradation. The activity shows an order of Mn3O4>Co3O4>Fe3O4. Mn3O4 could fast and completely remove phenol in about 20 min, at the conditions of 25 ppm phenol, 0.4 g/L catalyst, 2 g/L oxone®, and 25 °C. A pseudo first order model would fit to phenol degradation kinetics and activation energies on Mn3O4 and Co3O4 were obtained as 38.5 and 66.2 kJ/mol, respectively. In addition, Mn3O4 exhibited excellent catalytic stability in several runs, demonstrating that Mn3O4 is a promising catalyst alternative to toxic Co3O4 for water treatment.


Assuntos
Cobalto/química , Compostos Férricos/química , Compostos de Manganês/química , Nanopartículas Metálicas , Óxidos/química , Fenóis/química , Poluentes Químicos da Água/química , Catálise , Microscopia Eletrônica de Varredura , Oxirredução
8.
ACS Appl Mater Interfaces ; 4(11): 6235-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23101516

RESUMO

Nanoscaled zerovalent iron (ZVI) encapsulated in carbon spheres (nano-Fe°@CS) were prepared via a hydrothermal carbonization method, using glucose and iron(III) nitrate as precursors. The properties of the nano-Fe°@CS were investigated by X-ray diffraction (XRD), thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption/desorption isotherms. Nano-Fe°@CS was demonstrated, for the first time, as an effective material in activating Oxone (peroxymonosulfate, PMS) for the oxidation of organic pollutants. It was found that the efficiency of nano-Fe°@CS was higher than ZVI particles, iron ions, iron oxides, and a cobalt oxide. The mechanism of the high performance was discussed. The structure of the nano-Fe°@CS not only leads to high efficiency in the activation of PMS, but also good stability. This study extended the application of ZVI from reductive destruction of organics to oxidative degradation of organics by providing a green material for environmental remediation.


Assuntos
Cristalização/métodos , Química Verde/métodos , Ferro/química , Microesferas , Nanosferas/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanosferas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 4(10): 5466-71, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22967012

RESUMO

We discovered that chemically reduced graphene oxide, with an I(D)/I(G) >1.4 (defective to graphite) can effectively activate peroxymonosulfate (PMS) to produce active sulfate radicals. The produced sulfate radicals (SO(4)(•-)) are powerful oxidizing species with a high oxidative potential (2.5-3.1 vs 2.7 V of hydroxyl radicals), and can effectively decompose various aqueous contaminants. Graphene demonstrated a higher activity than several carbon allotropes, such as activated carbon (AC), graphite powder (GP), graphene oxide (GO), and multiwall carbon nanotube (MWCNT). Kinetic study of graphene catalyzed activation of PMS was carried out. It was shown that graphene catalysis is superior to that on transition metal oxide (Co(3)O(4)) in degradation of phenol, 2,4-dichlorophenol (DCP) and a dye (methylene blue, MB) in water, therefore providing a novel strategy for environmental remediation.


Assuntos
Grafite/química , Poluentes Químicos da Água/química , Catálise , Clorofenóis/química , Recuperação e Remediação Ambiental , Radicais Livres/química , Azul de Metileno/química , Nanotubos de Carbono/química , Oxirredução , Óxidos/química , Fenol/química
10.
Water Res ; 46(11): 3434-70, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22560620

RESUMO

Nowadays, carbon emission and therefore carbon footprint of water utilities is an important issue. In this respect, we should consider the opportunities to reduce carbon footprint for small and large wastewater treatment plants. The use of anaerobic rather than aerobic treatment processes would achieve this aim because no aeration is required and the generation of methane can be used within the plant. High-rate anaerobic digesters receive great interests due to their high loading capacity and low sludge production. Among them, the upflow anaerobic sludge blanket (UASB) reactors have been most widely used. However, there are still unresolved issues inhibiting the widespread of this technology in developing countries or countries with climate temperature fluctuations (such as subtropical regions). A large number of studies have been carried out in order to enhance the performance of UASB reactors but there is a lack of updated documentation. In face of the existing limitations and the increasing importance of this technology, the authors present an up-to-date review on the performance enhancements of UASB reactors over the last decade. The important aspects of this article are: (i) enhancing the start-up and granulation in UASB reactors, (ii) coupling with post-treatment unit to overcome the temperature constraint, and (iii) improving the removal efficiencies of the organic matter, nutrients and pathogens in the final effluent. Finally the authors have highlighted future research direction based on their critical analysis.


Assuntos
Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Quitosana , Desenho de Equipamento , Metano , Polietileno , Polímeros , Álcool de Polivinil , Esgotos
11.
Nanoscale ; 4(10): 3089-94, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22532436

RESUMO

Several zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized using ammonium hydroxide as an additive in the synthesis process. Their physicochemical properties have been characterized by N(2) adsorption/desorption, XRD, SEM, FTIR, and TGA, and their application in CO(2) adsorption was evaluated. It was found that addition of ammonium hydroxide produced some effects on the structure and adsorption behavior of Zr-MOFs. The pore size and pore volume of Zr-MOFs were enhanced with the additive, however, specific surface area of Zr-MOFs was reduced. Using an ammonium hydroxide additive, the crystal size of Zr-MOF was reduced with increasing amount of the additive. All the samples presented strong thermal stability. Adsorption tests showed that capacity of CO(2) adsorption on the Zr-MOFs under standard conditions was reduced due to decreased micropore fractions. However, modified Zr-MOFs had significantly lower adsorption heat. The adsorption capacity of carbon dioxide was increased at high pressure, reaching 8.63 mmol g(-1) at 987 kPa for Zr-MOF-NH(4)-2.


Assuntos
Gases/química , Hidróxidos/química , Zircônio/química , Adsorção , Hidróxido de Amônia , Dióxido de Carbono/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
12.
J Colloid Interface Sci ; 372(1): 58-62, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336327

RESUMO

Solution combustion using urea as a fuel was employed to synthesise Co oxide and Al(2)O(3)-, SiO(2)- and TiO(2)-supported Co oxide catalysts. The catalysts were characterised using several techniques such as N(2) adsorption/desorption, XRD, FTIR, UV-vis diffuse reflectance and SEM-EDX, and their catalytic activity was evaluated in phenol degradation in aqueous solution with sulphate radicals. Solution combustion is a simple and effective method in preparation of supported Co catalysts. Co(3)O(4) was the major Co crystal phase in the samples prepared via the combustion synthesis. Bulk Co(3)O(4) particles were not effective in reaction, but supported Co oxides showed higher activity than unsupported Co oxide. The supports influenced Co dispersion and catalytic activity. Co/TiO(2) exhibited the highest activity, but it deactivated much faster than other two supported catalysts. Co/SiO(2) showed a comparable activity to Co/Al(2)O(3) and the best stability among the three Al(2)O(3)-, SiO(2)- and TiO(2)-supported Co catalysts.


Assuntos
Cobalto/química , Óxidos/síntese química , Fenol/química , Catálise , Óxidos/química , Soluções/química , Ureia/química , Água/química
13.
J Colloid Interface Sci ; 366(1): 120-124, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22014395

RESUMO

Zirconium-metal organic frameworks (Zr-MOFs) were synthesized with or without ammonium hydroxide as an additive in the synthesis process. It was found that addition of ammonium hydroxide would change the textural structure of Zr-MOF. The BET surface area, pore volume, and crystal size of Zr-MOF were reduced after addition of ammonium hydroxide. However, the crystalline structure and thermal stability were maintained and no functional groups were formed. Adsorption tests showed that Zr-MOF presented much higher CO(2) adsorption than CH(4). Zr-MOF exhibited CO(2) and CH(4) adsorption of 8.1 and 3.6 mmol/g, respectively, at 273 K, 988 kPa. The addition of ammonium hydroxide resulted in the Zr-MOF with a slight lower adsorption of CO(2) and CH(4), however, the selectivity of CO(2)/CH(4) is significantly enhanced.

14.
Water Sci Technol ; 62(5): 1177-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20818062

RESUMO

An agricultural waste derived adsorbent was prepared by chemically modified barley straw with NaOH and a cationic surfactant hexadecylpyridinium chloride monohydrate (CPC). The prepared adsorbent, BMBS, was used for removal of anionic dyes; Acid Blue (AB40) and Reactive Blue 4 (RB4) from aqueous solution in a batch adsorption system. The adsorbent was characterized by FT-IR and elemental composition. The stability of CPC adsorbed on straw surface was also evaluated by exposing to aqueous solution. In adsorption tests, influence of operation parameters such as contact time, initial concentration and pH of solution on AB40 and RB4 uptake were investigated and discussed. The CPC was observed strongly attached to straw surface and removal percentage of AB40 and RB4 was increased with increasing in contact time. The adsorption of dyes on modified straw surface was favorable at high acidic condition and desorption was found relatively low upon exposing to the desorption agent (i.e water). Dynamic experiment revealed that the kinetic data fitted well to the pseudo-second-order model for both of the dyes. The isotherm study also indicated that RB4 and AB40 adsorption suited well with the Langmuir model, The maximum adsorption capacity determined from the Langmuir isotherm at 25 degrees C was 51.95 mg g(-1) and 31.5 for AB40 and RB4, respectively.


Assuntos
Ânions , Corantes/química , Caules de Planta/química , Poluentes Químicos da Água/química , Água/química , Adsorção , Cetilpiridínio/química , Hordeum , Tensoativos/química , Purificação da Água
15.
Bioresour Technol ; 100(23): 5744-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19625183

RESUMO

Barley straw, an agricultural waste, was chemically modified and evaluated for the removal of emulsified oils from aqueous solution. The chemical modification was performed using NaOH and a cationic surfactant, hexadecylpyridinium chloride monohydrate (CPC). The surface textural and chemical properties of the surfactant modified barley straw (BMBS) were characterized by N(2) adsorption, FT-IR, SEM and water soluble mineral content. The adsorption tests were carried out in batch adsorption system for removal of standard mineral oil (SMO) and canola oil (CO) from water. For both emulsified oils in wastewater, adsorption was found to be strongly related with solution pH. The isotherm study indicated that emulsified oil adsorption on BMBS could be fitted well with the Langmuir model other than Freundlich model. The maximum adsorption capacity for CO and SMO at 25 degrees C determined from the Langmuir isotherm is 613.3 and 584.2 mg g(-1), respectively. Desorption tests in water solution show that oil is strongly bonded with adsorbent and desorption is only about 1-2% in 24 h.


Assuntos
Ácidos Graxos Monoinsaturados/isolamento & purificação , Hordeum/metabolismo , Óleo Mineral/isolamento & purificação , Tensoativos/química , Purificação da Água/métodos , Adsorção , Biotecnologia/métodos , Cátions , Cetilpiridínio/química , Emulsificantes , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura/métodos , Óleo Mineral/análise , Minerais/química , Óleo de Brassica napus , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
16.
Bioresour Technol ; 100(18): 4292-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19386493

RESUMO

A barley straw was modified by a surfactant, cetylpyridinium chloride, and used as an adsorbent for acid (acid blue 40) and reactive dye (reactive black 5) adsorption in aqueous solution. Characterization of the modified barley straw was performed using N(2) adsorption, titration, and FT-IR analysis. It was found that the surfactant modified barley straw exhibits higher adsorption to acid blue 40 than reactive black 5 and adsorption of the dyes is influenced by several parameters such as dye initial concentration, adsorbent dosage, solution pH, and adsorption temperature. Adsorption isotherms show that maximum adsorption of acid blue 40 and reactive black 5 is 1.02x10(-4) and 2.54x10(-5) mol/g, respectively. Desorption studies show that both dyes are strongly bounded with the adsorbent and exhibit low desorption.


Assuntos
Ácidos/isolamento & purificação , Corantes/isolamento & purificação , Hordeum , Soluções , Tensoativos/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...