Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821396

RESUMO

Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Resultado do Tratamento , Antígeno Prostático Específico , Inibidores de Histona Desacetilases
2.
Nat Rev Urol ; 20(6): 371-384, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36650259

RESUMO

Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Próstata/patologia , Genótipo , Modelos Animais de Doenças
3.
Cancer Discov ; 13(3): 632-653, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399432

RESUMO

Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE: This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
DNA Tumoral Circulante , Neoplasias da Próstata , Masculino , Humanos , DNA Tumoral Circulante/genética , Nucleossomos/genética , Medicina de Precisão , Neoplasias da Próstata/patologia , Regulação Neoplásica da Expressão Gênica , Fenótipo
4.
Cancer Res Commun ; 2(5): 277-285, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36337169

RESUMO

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase with genomic and expression changes in many solid tumors. ALK inhibition is first line therapy for lung cancers with ALK alterations, and an effective therapy in other tumor types, but has not been well-studied in prostate cancer. Here, we aim to delineate the role of ALK genomic and expression changes in primary and metastatic prostate cancer. We determined ALK expression by immunohistochemistry and RNA-Seq, and genomic alterations by NGS. We assessed functional consequences of ALK overexpression and pharmacological ALK inhibition by cell proliferation and cell viability assays. Among 372 primary prostate cancer cases we identified one case with uniformly high ALK protein expression. Genomic analysis revealed a SLC45A3-ALK fusion which promoted oncogenesis in in vitro assays. We observed ALK protein expression in 5/52 (9%) of metastatic prostate cancer cases, of which 4 of 5 had neuroendocrine features. ALK-expressing neuroendocrine prostate cancer had a distinct transcriptional program, and earlier disease progression. An ALK-expressing neuroendocrine prostate cancer model was sensitive to pharmacological ALK inhibition. In summary, we found that ALK overexpression is rare in primary prostate cancer, but more frequent in metastatic prostate cancers with neuroendocrine differentiation. Further, ALK fusions similar to lung cancer are an occasional driver in prostate cancer. Our data suggest that ALK-directed therapies could be an option in selected patients with advanced prostate cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Masculino , Humanos , Quinase do Linfoma Anaplásico/genética , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases/genética , Neoplasias da Próstata/tratamento farmacológico
5.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34877933

RESUMO

Cancers with homology-directed DNA repair (HRR) deficiency exhibit high response rates to poly(ADP-ribose) polymerase inhibitors (PARPi) and platinum chemotherapy. Though mutations disrupting BRCA1 and BRCA2 associate with HRR deficiency (HRRd), patterns of genomic aberrations and mutation signatures may be more sensitive and specific indicators of compromised repair. Here, we evaluated whole-exome sequences from 418 metastatic prostate cancers (mPCs) and determined that one-fifth exhibited genomic characteristics of HRRd that included Catalogue Of Somatic Mutations In Cancer mutation signature 3. Notably, a substantial fraction of tumors with genomic features of HRRd lacked biallelic loss of a core HRR-associated gene, such as BRCA2. In this subset, HRRd associated with loss of chromodomain helicase DNA binding protein 1 but not with mutations in serine-protein kinase ATM, cyclin dependent kinase 12, or checkpoint kinase 2. HRRd genomic status was strongly correlated with responses to PARPi and platinum chemotherapy, a finding that supports evaluating biomarkers reflecting functional HRRd for treatment allocation.


Assuntos
Distúrbios no Reparo do DNA/genética , Genômica/métodos , Neoplasias da Próstata/genética , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Metástase Neoplásica
7.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998604

RESUMO

Prostate cancer (PC) is driven by androgen receptor (AR) activity, a master regulator of prostate development and homeostasis. Frontline therapies for metastatic PC deprive the AR of the activating ligands testosterone (T) and dihydrotestosterone (DHT) by limiting their biosynthesis or blocking AR binding. Notably, AR signaling is dichotomous, inducing growth at lower activity levels, while suppressing growth at higher levels. Recent clinical studies have exploited this effect by administration of supraphysiological concentrations of T, resulting in clinical responses and improvements in quality of life. However, the use of T as a therapeutic agent in oncology is limited by poor drug-like properties as well as rapid and variable metabolism. Here, we investigated the antitumor effects of selective AR modulators (SARMs), which are small-molecule nonsteroidal AR agonists developed to treat muscle wasting and cachexia. Several orally administered SARMs activated the AR program in PC models. AR cistromes regulated by steroidal androgens and SARMs were superimposable. Coregulatory proteins including HOXB13 and GRHL2 comprised AR complexes assembled by both androgens and SARMs. At bioavailable concentrations, SARMs repressed MYC oncoprotein expression and inhibited the growth of castration-sensitive and castration-resistant PC in vitro and in vivo. These results support further clinical investigation of SARMs for treating advanced PC.


Assuntos
Androgênios/farmacologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Di-Hidrotestosterona/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Transdução de Sinais/genética
8.
Clin Cancer Res ; 27(3): 759-774, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199493

RESUMO

PURPOSE: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant prostate cancer (CRPC) for which effective therapies are lacking. We previously identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a promising NEPC cell surface antigen. Here we investigated the scope of CEACAM5 expression in end-stage prostate cancer, the basis for CEACAM5 enrichment in NEPC, and the therapeutic potential of the CEACAM5 antibody-drug conjugate labetuzumab govitecan in prostate cancer. EXPERIMENTAL DESIGN: The expression of CEACAM5 and other clinically relevant antigens was characterized by multiplex immunofluorescence of a tissue microarray comprising metastatic tumors from 34 lethal metastatic CRPC (mCRPC) cases. A genetically defined neuroendocrine transdifferentiation assay of prostate cancer was developed to evaluate mechanisms of CEACAM5 regulation in NEPC. The specificity and efficacy of labetuzumab govitecan was determined in CEACAM5+ prostate cancer cell lines and patient-derived xenografts models. RESULTS: CEACAM5 expression was enriched in NEPC compared with other mCRPC subtypes and minimally overlapped with prostate-specific membrane antigen, prostate stem cell antigen, and trophoblast cell surface antigen 2 expression. We focused on a correlation between the expression of the pioneer transcription factor ASCL1 and CEACAM5 to determine that ASCL1 can drive neuroendocrine reprogramming of prostate cancer which is associated with increased chromatin accessibility of the CEACAM5 core promoter and CEACAM5 expression. Labetuzumab govitecan induced DNA damage in CEACAM5+ prostate cancer cell lines and marked antitumor responses in CEACAM5+ CRPC xenograft models including chemotherapy-resistant NEPC. CONCLUSIONS: Our findings provide insights into the scope and regulation of CEACAM5 expression in prostate cancer and strong support for clinical studies of labetuzumab govitecan for NEPC.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígeno Carcinoembrionário/genética , Carcinoma Neuroendócrino/genética , Neoplasias de Próstata Resistentes à Castração/genética , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Rep ; 31(8): 107669, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460015

RESUMO

Prostate cancers (PCs) with loss of the potent tumor suppressors TP53 and RB1 exhibit poor outcomes. TP53 and RB1 also influence cell plasticity and are frequently lost in PCs with neuroendocrine (NE) differentiation. Therapeutic strategies that address these aggressive variant PCs are urgently needed. Using deep genomic profiling of 410 metastatic biopsies, we determine the relationships between combined TP53 and RB1 loss and PC phenotypes. Notably, 40% of TP53/RB1-deficient tumors are classified as AR-active adenocarcinomas, indicating that NE differentiation is not an obligate consequence of TP53/RB1 inactivation. A gene expression signature reflecting TP53/RB1 loss is associated with diminished responses to AR antagonists and reduced survival. These tumors exhibit high proliferation rates and evidence of elevated DNA repair processes. While tumor cells lacking TP53/RB1 are highly resistant to all single-agent therapeutics tested, the combination of PARP and ATR inhibition is found to produce significant responses, reflecting a clinically exploitable vulnerability resulting from replication stress.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Próstata/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Proliferação de Células , Humanos , Masculino
10.
Clin Cancer Res ; 25(1): 426-439, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30181386

RESUMO

PURPOSE: Tumor androgens in castration-resistant prostate cancer (CRPC) reflect de novo intratumoral synthesis or adrenal androgens. We used C.B.-17 SCID mice in which we observed adrenal CYP17A activity to isolate the impact of adrenal steroids on CRPC tumors in vivo. EXPERIMENTAL DESIGN: We evaluated tumor growth and androgens in LuCaP35CR and LuCaP96CR xenografts in response to adrenalectomy (ADX). We assessed protein expression of key steroidogenic enzymes in 185 CRPC metastases from 42 patients. RESULTS: Adrenal glands of intact and castrated mice expressed CYP17A. Serum DHEA, androstenedione (AED), and testosterone (T) in castrated mice became undetectable after ADX (all P < 0.05). ADX prolonged median survival (days) in both CRPC models (33 vs. 179; 25 vs. 301) and suppressed tumor steroids versus castration alone (T 0.64 pg/mg vs. 0.03 pg/mg; DHT 2.3 pg/mg vs. 0.23 pg/mg; and T 0.81 pg/mg vs. 0.03 pg/mg, DHT 1.3 pg/mg vs. 0.04 pg/mg; all P ≤ 0.001). A subset of tumors recurred with increased steroid levels, and/or induction of androgen receptor (AR), truncated AR variants, and glucocorticoid receptor (GR). Metastases from 19 of 35 patients with AR positive tumors concurrently expressed enzymes for adrenal androgen utilization and nine expressed enzymes for de novo steroidogenesis (HSD3B1, CYP17A, AKR1C3, and HSD17B3). CONCLUSIONS: Mice are appropriate for evaluating adrenal impact of steroidogenesis inhibitors. A subset of ADX-resistant CRPC tumors demonstrate de novo androgen synthesis. Tumor growth and androgens were suppressed more strongly by surgical ADX than prior studies using abiraterone, suggesting reduction in adrenally-derived androgens beyond that achieved by abiraterone may have clinical benefit. Proof-of-concept studies with agents capable of achieving true "nonsurgical ADX" are warranted.


Assuntos
Androgênios/genética , Proliferação de Células/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , 17-Hidroxiesteroide Desidrogenases/genética , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/cirurgia , Adrenalectomia , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Androgênios/biossíntese , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Complexos Multienzimáticos/genética , Recidiva Local de Neoplasia , Progesterona Redutase/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/cirurgia , Esteroide 17-alfa-Hidroxilase/genética , Esteroide Isomerases/genética , Testosterona/genética , Testosterona/metabolismo
11.
Am J Pathol ; 186(1): 87-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26610869

RESUMO

Cardiac fibrosis is observed across diverse etiologies of heart failure. Granzyme B (GzmB) is a serine protease involved in cell-mediated cytotoxicity in conjunction with the pore-forming protein, perforin. Recent evidence suggests that GzmB also contributes to matrix remodeling and fibrosis through an extracellular, perforin-independent process. However, the role of GzmB in the onset and progression of cardiac fibrosis remains elusive. The present study investigated the role of GzmB in the pathogenesis of cardiac fibrosis. GzmB was elevated in fibrotic human hearts and in angiotensin II-induced murine cardiac fibrosis. Genetic deficiency of GzmB reduced angiotensin II-induced cardiac hypertrophy and fibrosis, independently of perforin. GzmB deficiency also reduced microhemorrhage, inflammation, and fibroblast accumulation in vivo. In vitro, GzmB cleaved the endothelial junction protein, vascular endothelial (VE)-cadherin, resulting in the disruption of endothelial barrier function. Together, these results suggest a perforin-independent, extracellular role for GzmB in the pathogenesis of cardiac fibrosis.


Assuntos
Granzimas/metabolismo , Cardiopatias/enzimologia , Cardiopatias/patologia , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Fibrose/enzimologia , Fibrose/patologia , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
12.
Curr Vasc Pharmacol ; 13(1): 95-110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-22724479

RESUMO

Abdominal aortic aneurysm (AAA) is an age-related disease resulting in aortic wall weakening and dilatation which may progress to the fatal point of abrupt aortic wall rupture. Chronic inflammation is a driving force in the pathogenesis of AAA and extracellular matrix (ECM) proteases are considered central to aortic wall degradation. Considerable effort is dedicated to identifying the proteases responsible as well as the mechanism by which these proteases contribute to disease progression. As such, they are considered important molecular targets for pharmacological intervention. Along with smoking, male gender and family history, aging is a major risk factor for AAA. Examination of age-related changes of the immune system reveals an interwoven relationship between the processes of aging and chronic inflammation, collectively predisposing to AAA development. The present review explores current evidence as to the role of specific ECM proteases in AAA pathogenesis. The contribution of the aging process to disease pathogenesis is also explored to provide the relevant context and highlight key molecular pathways that should be considered while attempting to develop effective treatment approaches.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Inflamação/metabolismo , Inflamação/patologia , Peptídeo Hidrolases/metabolismo , Animais , Ruptura Aórtica/metabolismo , Ruptura Aórtica/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Fatores de Risco
13.
Nat Med ; 20(5): 493-502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784232

RESUMO

Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12(-/-) but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrate's gene exons and by MMP-12-mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3-infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments.


Assuntos
Núcleo Celular/genética , Imunidade/genética , Interferon-alfa/genética , Metaloproteinase 12 da Matriz/genética , Animais , Sítios de Ligação , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Citosol/virologia , Células HeLa , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , Pâncreas/imunologia , Pâncreas/virologia , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/patogenicidade , Replicação Viral/efeitos dos fármacos
14.
Am J Pathol ; 176(2): 1038-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035050

RESUMO

Granzyme B (GZMB) is a serine protease that is abundantly expressed in advanced human atherosclerotic lesions and may contribute to plaque instability. Perforin is a pore-forming protein that facilitates GZMB internalization and the induction of apoptosis. Recently a perforin-independent, extracellular role for GZMB has been proposed. In the current study, the role of GZMB in abdominal aortic aneurysm (AAA) was assessed. Apolipoprotein E (APOE)(-/-) x GZMB(-/-) and APOE(-/-) x perforin(-/-) double knockout (GDKO, PDKO) mice were generated to test whether GZMB exerted a causative role in aneurysm formation. To induce aneurysm, mice were given angiotensin II (1000 ng/kg/min) for 28 days. GZMB was found to be abundant in both murine and human AAA specimens. GZMB deficiency was associated with a decrease in AAA and increased survival compared with APOE-KO and PDKO mice. Although AAA rupture was observed frequently in APOE-KO (46.7%; n = 15) and PDKO (43.3%; n = 16) mice, rupture was rarely observed in GDKO (7.1%; n = 14) mice. APOE-KO mice exhibited reduced fibrillin-1 staining compared with GDKO mice, whereas in vitro protease assays demonstrated that fibrillin-1 is a substrate of GZMB. As perforin deficiency did not affect the outcome, our results suggest that GZMB contributes to AAA pathogenesis via a perforin-independent mechanism involving extracellular matrix degradation and subsequent loss of vessel wall integrity.


Assuntos
Aneurisma da Aorta Abdominal/genética , Granzimas/metabolismo , Perforina/fisiologia , Angiotensina II/farmacologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/mortalidade , Apolipoproteínas E/genética , Espaço Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Granzimas/genética , Granzimas/fisiologia , Humanos , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Perforina/genética , Perforina/metabolismo , Processamento de Proteína Pós-Traducional/genética , Distribuição Tecidual
15.
J Physiol Sci ; 58(6): 405-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18845058

RESUMO

Endothelial dysfunction often precedes Type 2 diabetes-associated cardiovascular complications. One important cause of endothelial dysfunction is oxidative stress, which can lead to reduced nitric oxide (NO) bioavailability. In this study, we examined the effects of ramipril (an angiotensin-converting enzyme inhibitor, ACEI) on reactive oxygen species (ROS) production and endothelium-dependent vasodilation using a Type 2 diabetic (db/db) murine model. Plasma concentration of 8-isoprostane ([8-isoP]) was measured and used as an indication of the amount of ROS production. Six weeks of ramipril (10 mg/kg/day) treatment significantly reduced [8-isoP] and improved acetylcholine(ACh)-induced vasodilation in db/db mice without altering responses in wild-type (WT) mice. Responsiveness of smooth muscle cells to NO, assessed by sodium nitroprusside-induced vasodilation, was not different between db/db and WT mice regardless of ramipril or vehicle treatment. Our results suggest that ramipril specifically improved endothelium-dependent vasodilation in Type 2 diabetic mice, possibly by reducing ROS levels.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ramipril/farmacologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Vasodilatadores/farmacologia
16.
Exp Gerontol ; 43(7): 615-622, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18468826

RESUMO

Numerous murine models are available for the study of the human aging process. Most of these models are based on known mutations that cause progeroid disease in humans or are involved in DNA repair and cell senescence. While these models certainly have contributed to our knowledge of age-related diseases, none adequately represent the range of human ailments involving cardiovascular and neurocognitive deterioration. In the current review, we summarize the available murine models of aging to date. We then discuss the known involvement of apolipoprotein E (ApoE) in various symptoms of the human aging process and describe the corresponding age-related phenotypes presented by the ApoE knockout mouse.


Assuntos
Envelhecimento/fisiologia , Apolipoproteínas E/fisiologia , Longevidade/fisiologia , Idoso , Envelhecimento/genética , Animais , Apolipoproteínas E/genética , Doenças Cardiovasculares/genética , Reparo do DNA , Demência/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Glucuronidase/genética , Humanos , Proteínas Klotho , Camundongos , Camundongos Knockout , Fenótipo
17.
Can J Physiol Pharmacol ; 84(1): 77-92, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16845893

RESUMO

Versican, a chondroitin sulfate proteoglycan, is one of the main components of the extracellular matrix, which provides a loose and hydrated matrix during key events in development and disease. Versican participates in cell adhesion, proliferation, migration, and angiogenesis, and hence plays a central role in tissue morphogenesis and maintenance. In addition, versican contributes to the development of a number of pathologic processes including atherosclerotic vascular diseases, cancer, tendon remodeling, hair follicle cycling, central nervous system injury, and neurite outgrowth. Versican is a complex molecule consisting of modular core protein domains and glycosaminoglycan side chains, and there are various steps of synthesis and processes regulating them. Also, there is differential temporal and spatial expression of versican by multiple cell types and in different developmental and pathological time frames. To fully appreciate the functional roles of versican as it relates to changing patterns of expression in development and disease, an in depth knowledge of versican's biosynthetic processing is necessary. The goal of this review is to evaluate the current status of our knowledge regarding the transcriptional control of versican gene regulation. We will be focusing on the signal transduction pathways, promoter regions, cis-acting elements, and trans-factors that have been characterized.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas Tipo C/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Transdução de Sinais , Transcrição Gênica , Versicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...