Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 21412-21421, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859495

RESUMO

Integrated photonics platforms are a key driver for advancing scalable photonics technologies. To rigorously characterize and calibrate on-chip integrated photodetectors for ultra-sensitive applications such as quantum sensing and photonic computing, a low-power calibration source down to single-photon levels is required. To date, such sources still largely rely on off-chip bulk or fiber optic setups to accurately attenuate a laser beam referenced to a sub-mW-level primary standard. Here, we demonstrate an on-chip integrated attenuation solution where a mW-level beam is coupled to a silicon nitride photonics circuit, and is attenuated by a series of cascaded directional couplers (DCs). With an integrated silicon photodetector, we measured an attenuation at 685 nm wavelength of up to 16.61 dB with an expanded uncertainty of 0.24 dB for one DC stage. With appropriate scattering mitigation, we infer from our results that a total attenuation of 149.5 dB (expanded uncertainty of 0.5 dB) can be obtained with 9 stages of cascaded DCs, thus allowing single-photon power levels to be obtained directly on-chip from a moderate-power laser source.

2.
Nanoscale ; 12(42): 21713-21718, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33094787

RESUMO

Subwavelength light-guiding optical devices have gained great attention in the photonics community because they provide unique opportunities for miniaturization and functionality of the optical interconnect technology. On the other hand, high-refractive-index dielectric nanoparticles working at their fundamental Mie resonances have recently opened new venues to enhance and control light-matter interactions at the nanoscale while being free from Ohmic losses. Combining the best of both worlds, here we experimentally demonstrate low-loss slow light waveguiding in a chain of coupled silicon Mie resonators at telecommunication wavelengths. This resonant coupling forms waveguide modes with propagation losses comparable to, or even lower than those in a stripe waveguide of the same cross section. Moreover, the nanoparticle waveguide also exhibits slow light behaviour, with group velocities down to 0.03 of the speed of light. These unique properties of coupled silicon Mie resonator waveguides, together with hybrid coupler designs reducing the coupling loss from a bus waveguide, as also shown in this work, may open a path towards their potential applications in integrated photonics for light control in optical and quantum communications or biosensing, to mention some.

3.
Opt Lett ; 42(21): 4450-4453, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088185

RESUMO

We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30 dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30 dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30 dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42 dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

4.
Sci Rep ; 7(1): 7246, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775381

RESUMO

Broadband Silicon-On-Insulator (SOI) directional couplers are designed based on a combination of curved and straight coupled waveguide sections. A design methodology based on the transfer matrix method (TMM) is used to determine the required coupler section lengths, radii, and waveguide cross-sections. A 50/50 power splitter with a measured bandwidth of 88 nm is designed and fabricated, with a device footprint of 20 µm × 3 µm. In addition, a balanced Mach-Zehnder interferometer is fabricated showing an extinction ratio of >16 dB over 100 nm of bandwidth.

5.
Opt Express ; 17(7): 5176-92, 2009 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19333282

RESUMO

We present a coupling matrix formalism to investigate the effects of periodic and quasi-periodic orders on the photonic bandgap (PBG) structures of coupled-resonator optical waveguides (CROWs) based on microring resonators. For the periodic order case, size-tuned defects are introduced at periodic locations among the regular rings, which are size-untuned, to form a periodic ordered CROW system. The periodic coupled defects result in multiple localization states that lead to the formation of mini-defect bands and mini-PBGs within the PBG of a defect-free CROW. The position and number of such mini-defect bands depend on the size tuning of the defects. For the quasi-periodic order case, the arrangement of the defects and the regular rings in the ring cascade is an intermediate between periodic order and randomness, thus forming a quasi-periodic ordered CROW system. The effects of quasi-periodicity on the PBG structures are illustrated using the Fibonacci sequences, which result in a single high-Q localized state to appear that gradually transits to a mini-band within a wide photonic stop band as the number of lattice cells increases.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...