Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985876

RESUMO

Herein, we carefully investigated the Fe3+ doping effects on the structure and electron distribution of Cr2O3 nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe3+ replaces Cr in the Cr2O3 lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe-O1 bond length followed by an opposite effect for the Cr/Fe-O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr2O3 and Fe-doped Cr2O3 nanoparticles behave as Mott-Hubbard insulators due to their band gap being in the d-d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr2O3 nanoparticles are modulated by the Cr-Cr distances until its stabilization at the induced quasi-equilibrium of the Cr2O3 lattice when the Fe3+ doping values reaches the saturation level range.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014752

RESUMO

ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.

3.
Materials (Basel) ; 12(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052534

RESUMO

Two bentonites from Paraíba (Northeastern Brazil) were impregnated with heteropoly phosphomolybdic H3PMo12O40 (HPMo). The materials produced were characterized by various techniques such as N2 adsorption-desorption (specific surface area, SSA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA/DTG), Scanning Electron Microscopy (SEM) equipped with Dispersive Energy X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-vis), acid-base titration analysis. The catalytic activity of these materials was tested in the esterification of a waste from palm oil deodorization and the main results obtained (about 93.3% of conversion) indicated that these materials have potential to act as heterogeneous solid acid catalysts. The prepared materials exhibited satisfactory catalytic performance even after a very simple recycling process in three reuse cycles, without significant loss of their activities.

4.
Bioresour Technol ; 102(17): 8314-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21704520

RESUMO

The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950°C and activated with 4M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160°C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.


Assuntos
Biocombustíveis , Odorantes , Óleos de Plantas/metabolismo , Eliminação de Resíduos , Catálise , Cinética , Óleo de Palmeira , Temperatura
5.
J Hazard Mater ; 155(1-2): 230-42, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18162300

RESUMO

Smectite clay samples from the Amazon region, Brazil, were pillarized by intercalating the species obtained from the chemical reactions: (i) AlCl3.6H2O/NaOH, (ii) titanium ethoxide in hydrochloric acid and (iii) direct use of ZrOCl2.8H2O solution. The natural matrices and the pillaring solutions were maintained under vigorous stirring at 298 K for 3 h and then subjected to calcination at temperatures of 723 and 873 K. Natural and pillared matrices were characterized by XRD, FTIR, TG-DTG and nitrogen adsorption-desorption isotherms. The resulting materials were used for zinc adsorption from aqueous solution at room temperature. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data and the Freundlich model is limited for higher concentrations. The pillaring process increases the thermal stability, the basal spacing of the natural clay sample (A1) from 1.55 to 2.06 nm and the surface area from 44.30 to 223.73 m2 g(-1). Kinetic studies demonstrated an equilibrium time of 180 min for zinc adsorption on the pillared matrices. Pseudo-first-order, Lagergren pseudo-second-order and Elovich equations demonstrated a better agreement with second-order kinetics was obtained with K2=4.17-10.43 x 10(-3)g mg(-1)min(-1) for the A1 sample.


Assuntos
Silicatos de Alumínio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zinco/química , Adsorção , Alumínio/química , Brasil , Argila , Cinética , Termodinâmica , Titânio/química , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...