Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Med Health ; 52(1): 32, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650044

RESUMO

Schistosomiasis, a neglected tropical disease, caused by blood flukes belonging to the genus Schistosoma; it persists as a public health problem in selected regions throughout Africa, South America, and Asia. Schistosoma mekongi, a zoonotic schistosome species endemic to the Mekong River in Laos and Cambodia, is one of the significant causes of human schistosomiasis along with S. japonicum, S. mansoni, S. haematobium and S. intercalatum. Since its discovery, S. mekongi infection has been highly prevalent in communities along the Mekong River. Although surveillance and control measures have shown success in recent years, more robust diagnostic tools are still needed to establish more efficient control and prevention strategies to achieve and sustain an elimination status. Diagnosis of S. mekongi infection still relies on copro-parasitological techniques, commonly made by Kato-Katz stool examination. Serological techniques such as enzyme-linked immunosorbent assay (ELISA) may also be applicable but in a limited setting. Targeted molecular and serological tools specific to the species, on the other hand, have been limited. This is due, in part, to the limited research and studies on the molecular biology of S. mekongi since genome information of this species has not yet been released. In this review, current advances, and gaps and limitations in the molecular and immunological diagnosis of S. mekongi are discussed.

2.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672994

RESUMO

Asian schistosomiasis caused by the blood fluke Schistosoma mekongi is endemic in northern Cambodia and Southern Lao People's Democratic Republic. The disease is mainly diagnosed by stool microscopy. However, serodiagnosis such as enzyme-linked immunosorbent assay (ELISA) with soluble egg antigen (SEA), has been shown to have better sensitivity compared to the stool examination, especially in the settings with a low intensity of infection. To date, no recombinant antigen has been assessed using ELISA for the detection of S. mekongi infection, due to the lack of genome information for this schistosome species. Thus, the objective of this study is to evaluate several recombinant S. japonicum antigens that have been developed in our laboratory for the detection of S. mekongi infection. The crude antigen SjSEA and recombinant antigens Sj7TR, SjPCS, SjPRx-4, and SjChi-3 were evaluated in ELISA using serum samples positive for S. mekongi infection. The cross-reaction was checked using sera positive for Ophistorchis viverrini. ELISA results showed that S. japonicum SEA at low concentrations showed better diagnostic performance than the recombinant antigens tested using the archived serum samples from Cambodia. However, further optimization of the recombinant antigens should be conducted in future studies to improve their diagnostic performance for S. mekongi detection.

3.
Diagnostics (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36553084

RESUMO

Schistosoma mekongi, a blood fluke that causes Asian zoonotic schistosomiasis, is distributed in communities along the Mekong River in Cambodia and Lao People's Democratic Republic. Decades of employing numerous control measures including mass drug administration using praziquantel have resulted in a decline in the prevalence of schistosomiasis mekongi. This, however, led to a decrease in sensitivity of Kato-Katz stool microscopy considered as the gold standard in diagnosis. In order to develop a serological assay with high sensitivity and specificity which can replace Kato-Katz, recombinant S. mekongi thioredoxin peroxidase-1 protein (rSmekTPx-1) was expressed and produced. Diagnostic performance of the rSmekTPx-1 antigen through ELISA for detecting human schistosomiasis was compared with that of recombinant protein of S. japonicum TPx-1 (rSjTPx-1) using serum samples collected from endemic foci in Cambodia. The sensitivity and specificity of rSmekTPx-1 in ELISA were 89.3% and 93.3%, respectively, while those of rSjTPx-1 were 71.4% and 66.7%, respectively. In addition, a higher Kappa value of 0.82 calculated between rSmekTPx-1 antigen ELISA and Kato-Katz confirmed better agreement than between rSjTPx-1 antigen ELISA and Kato-Katz (Kappa value 0.38). These results suggest that ELISA with rSmekTPx-1 antigen can be a potential diagnostic method for detecting active human S. mekongi infection.

4.
Parasitol Res ; 121(8): 2445-2448, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35672537

RESUMO

Secretory enzymes from Schistosoma japonicum are promising candidate antigens in the diagnosis of schistosomiasis. Our previous studies have proven that thioredoxin peroxidase-1 (SjTPx-1) is useful for the detection of this parasitic disease in humans, water buffaloes, and dogs. In this study, we evaluated two more secretory enzymes namely phosphoglycerate mutase (SjPGM) and phytochelatin synthase (SjPCS) with SjTPx-1 as the reference antigen. SjPGM was shown to have good diagnostic potentials in animal samples in previous studies, whereas SjPCS was chosen because of its absence in the mammalian hosts. Serum samples including 96 endemic negative controls, 107 schistosomiasis japonica positive samples, and 31 samples positive for other parasitic trematode infections (Clonorchis sinensis, Opisthorchis viverrini, Paragonimus westermani) were tested with the antigens using enzyme-linked immunosorbent assay. Results showed that SjPCS detected more positive samples and had fewer cross-reactions than SjPGM. With 85.05% sensitivity and 93.55% specificity, SjPCS can therefore be used in the detection of human schistosomiasis.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Aminoaciltransferases , Animais , Antígenos de Helmintos , Ensaio de Imunoadsorção Enzimática , Humanos , Fosfoglicerato Mutase , Schistosoma japonicum/enzimologia , Esquistossomose Japônica/diagnóstico , Sensibilidade e Especificidade
5.
Parasitol Int ; 88: 102562, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183771

RESUMO

Fasciola flukes collected from domestic buffalos and cattle in the Philippines were confirmed as Fasciola gigantica and parthenogenetic Fasciola based on DNA analyses of nuclear pepck and pold genes, and the mitochondrial ND1 gene. This study is the first to elucidate that F. gigantica and parthenogenetic Fasciola coexist in the Philippines with prevalences of 90.6% and 9.4%, respectively. The F. gigantica population showed a high genetic diversity with 25 ND1 haplotypes, suggesting that F. gigantica has existed in the Philippines for a long time. In contrast, parthenogenetic Fasciola flukes showed a single ND1 haplotype (Fsp-ND1-P1), which was identical to the founder haplotype, Fg-C2 of parthenogenetic Fasciola in China. These results indicate that parthenogenetic Fasciola in the Philippines is a recently introduced population from a neighboring continent.


Assuntos
Doenças dos Bovinos , Fasciola , Fasciolíase , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Fasciola/genética , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Haplótipos , NADH Desidrogenase/genética , Filipinas/epidemiologia
6.
Front Vet Sci ; 7: 592783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195631

RESUMO

In this study, we investigated the use of recombinant antigens thioredoxin peroxidase-1 (rSjTPx-1) and tandem repeat rSj1TR in evaluating the antibody positivity rates of Schistosoma japonicum infection among water buffaloes from four endemic areas in the Philippines, two municipalities with high endemicity (Calatrava, Negros Occidental and Catarman, Northern Samar) and two municipalities nearing elimination with no cases of human schistosomiasis (Talibon and Trinidad, Bohol). These recombinant antigen ELISA assays were compared with other diagnostic tests including SEA-ELISA, FECT, and fecal-based PCR. Results showed that rSj1TR-ELISA has the highest agreement with PCR in all study areas. Furthermore, significant positivity rates among water buffaloes were seen in Talibon and Trinidad, indicating that water buffaloes are maintaining the schistosome parasites in transmission areas even in the absence of human infection. Hence, serological assay using a more sensitive and specific rSj1TR-ELISA can be used for animal surveillance to prevent emergence and re-emergence of human schistosomiasis.

7.
Parasit Vectors ; 13(1): 436, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867818

RESUMO

BACKGROUND: Schistosoma japonicum, which inhabits the mesenteric vein of the mammalian hosts for about 20 to 30 years, is subjected to the oxidative stresses from the host defense mechanism during their intra-mammalian stages. To counteract this host immune attack, the parasite utilizes their antioxidant system for survival inside the host. Peroxiredoxins (Prxs), thiol-specific antioxidant proteins, play an essential role for protecting the parasite against oxidative stress by reducing hydrogen peroxide to water. Only three types of 2-Cys Prxs have been previously characterized in S. japonicum whereas a fourth Prx has been identified for Schistosoma mansoni as Prx-4. A sequence coding homologous to this gene in the S. japonicum database was identified, characterized and expressed as recombinant SjPrx-4 protein (rSjPrx-4). Furthermore, rSjPrx-4 was evaluated in this study for its diagnostic potentials in detecting S. japonicum infection in humans. RESULTS: The gene found in the parasite genome contained 2 active-site cysteines with conserved sequences in the predicted amino acid (AA) sequence and showed 75% identity with that of the previously characterized Prx (TPx-1) of S. japonicum. The gene was expressed in different stages of schistosome life-cycle with highest transcription level in the adult male. The gene was cloned into a plasmid vector and then transfected into Escherichia coli for expression of rSjPrx-4. Anti-rSjPrx-4 mouse sera recognized native SjPrx-4 in egg and adult worm lysate by western blotting. The result of a mixed function oxidation assay in which rSjPrx-4 prevented the nicking of DNA from hydroxyl radicals confirmed its antioxidant activity. Subsequently, immunolocalization analysis showed the localization of SjPrx-4 inside the egg, on the tegument and in the parenchyma of the adult worm. Enzyme-linked immunosorbent assay results showed that rSjPrx-4 has 83.3% sensitivity and 87.8% specificity. Its diagnostic potential was further evaluated in combination with recombinant SjTPx-1 protein, yielding an improved sensitivity and specificity of 90% and 92.7%, respectively. CONCLUSIONS: These results suggest that SjPrx-4 plays a role as an antioxidant dealing with oxidative stresses of S. japonicum, and its diagnostic potential improved by coupling it with SjTPx-1 is a proof for developing a serological test with better diagnostic performance for human schistosomiasis.


Assuntos
Peroxirredoxinas , Schistosoma japonicum/metabolismo , Testes Sorológicos , Animais , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Antioxidantes/metabolismo , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Expressão Gênica , Genes de Helmintos , Imuno-Histoquímica/métodos , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Peroxirredoxinas/metabolismo , Schistosoma japonicum/genética , Schistosoma japonicum/imunologia , Esquistossomose Japônica/diagnóstico , Esquistossomose Japônica/imunologia
8.
Front Immunol ; 11: 1018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582161

RESUMO

The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.


Assuntos
Anti-Helmínticos/uso terapêutico , Antígenos de Helmintos/imunologia , Schistosoma/fisiologia , Esquistossomose/imunologia , Células Th2/imunologia , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Imunomodulação , Esquistossomose/terapia
9.
J Vet Med Sci ; 81(10): 1413-1418, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31391359

RESUMO

Humans and dogs live very close together and share various pathogens causing zoonotic parasitoses like schistosomiasis. A previous population genetics study done for schistosomes in the Philippines suggested that there is a high transmission level of Schistosoma japonicum among humans and dogs proving that the latter are important reservoirs for this zoonotic parasite. A more sensitive and specific test detecting schistosome infection in dogs will therefore strengthen the zoonotic surveillance, which might help in the possible elimination of this ancient disease. In this study, recombinant thioredoxin peroxidase-1 (SjTPx-1) and tandem repeat proteins (Sj1TR, Sj2TR, Sj4TR, Sj7TR) previously tested on human and water buffalo samples were used to assess its diagnostic applicability to dogs. Fifty-nine dog serum and stool samples were collected in the schistosomiasis-endemic municipalities of Calatrava, Negros Occidental and Catarman, Northern Samar in the Philippines and examined using the ELISA as compared to microscopy and fecal sample-based PCR. Samples positive for Babesia gibsoni and Dirofilaria immitis were also used to check for cross-reaction. Results showed that SjTPx-1 (80% sensitivity, 92.3% specificity) and Sj7TR (73.3% sensitivity, 92.3% specificity) have good potentials for diagnosing S. japonicum infection in dogs. These diagnostic antigens will therefore improve the surveillance in the transmission of the parasites from dogs to humans.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Peroxirredoxinas/imunologia , Esquistossomose Japônica/diagnóstico , Animais , Antígenos de Helmintos , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Filipinas/epidemiologia , Proteínas Recombinantes/imunologia , Schistosoma japonicum/imunologia
10.
Parasitol Res ; 118(9): 2601-2608, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31377909

RESUMO

In this study, the diagnostic value of Schistosoma japonicum cathepsin B (SjCatB) was evaluated as an antigen for the early detection of S. japonicum infection. SjCatB is a key protease used by the cercaria to penetrate the intact skin of the host for transdermal infection. The early exposure of the host's immune system to this enzyme may elicit early production of antibodies against this molecule. Therefore, the recombinant SjCatB (rSjCatB) was expressed in Escherichia coli with N-terminal 6xHis-tag. rSjCatB was tested for its performance as a diagnostic antigen using indirect enzyme-linked immunosorbent assay (ELISA) with sera from experimentally infected mice collected at > 8 weeks post-infection. Showing 100% sensitivity and 95.0% specificity in the ELISA, rSjCatB was then evaluated with sera from experimentally infected mice collected at 1-7 weeks post-infection to determine how early the antibodies can be detected. Results showed that as early as 6 weeks post-infection, 2 of the 3 infected mice were found to be positive with the antibodies against SjCatB. Furthermore, the potential of the recombinant antigen in detecting human schistosomiasis was evaluated with archived serum samples collected from individuals who had been diagnosed with S. japonicum infection by stool examination. Results showed 86.7% sensitivity and 96.7% specificity suggesting its high diagnostic potential for human schistosomiasis. In addition, SjCatB showed minimal cross-reaction with the sera collected from patients with other parasitic diseases. In conclusion, the results of this study suggest that SjCatB will be useful in the development of a sensitive and specific early detection test for S. japonicum infection.


Assuntos
Catepsina B/análise , Ensaio de Imunoadsorção Enzimática/métodos , Schistosoma japonicum/enzimologia , Esquistossomose Japônica/diagnóstico , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/análise , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Ásia , Catepsina B/genética , Catepsina B/imunologia , Reações Cruzadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Schistosoma japonicum/genética , Schistosoma japonicum/imunologia , Schistosoma japonicum/isolamento & purificação , Esquistossomose Japônica/sangue , Esquistossomose Japônica/parasitologia , Sensibilidade e Especificidade , Zoonoses/sangue , Zoonoses/diagnóstico , Zoonoses/parasitologia
11.
Exp Parasitol ; 189: 61-65, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29679595

RESUMO

Schistosoma japonicum, causing zoonotic intestinal schistosomiasis, is found in China, the Philippines and parts of Indonesia. Severe disease manifestations are basically due to the deposition of eggs in some vital organs such as the liver, spleen and brain. Traditionally, histopathological microscopic examination of the egg burden was used to evaluate the intensity of infection in the affected organs. However, this technique is laborious, time-consuming and requires trained personnel. In this study, real time PCR targeting the mitochondrial NADH dehydrogenase I gene was used to compare with microscopic examination of tissue sections in evaluating the egg burdens in different affected organs. Livers, spleens and brains of the S. japonicum infected mice after 8 and 18 weeks post-infection (p.i) were harvested and examined. Results showed that there were statistically significant correlations between the egg burden evaluated by tissue section examination, and the Ct values of the real time PCR of livers with heavy egg burden at 8 (r = -0.81) and 18 (r = -0.80) weeks p.i. Furthermore, a correlation (r = -0.56) between the egg burden assessed by the microscopic examination and Ct value of the real time PCR of spleens with moderate egg burden after 18 weeks p.i and not 8 weeks p.i was also observed. Brains with low egg burden showed no schistosome eggs in the microscopic examination, however one sample tested positive by real time PCR. These results suggested that real time PCR is useful in evaluating schistosome egg burden in the organs of the experimentally infected mice model that will give further insights into the pathology of schistosomiasis.


Assuntos
NADH Desidrogenase/genética , Schistosoma japonicum/genética , Esquistossomose Japônica/parasitologia , Animais , Encéfalo/parasitologia , Fígado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/enzimologia , Óvulo , Contagem de Ovos de Parasitas/métodos , Reação em Cadeia da Polimerase em Tempo Real , Schistosoma japonicum/enzimologia , Schistosoma japonicum/crescimento & desenvolvimento , Esquistossomose Japônica/diagnóstico , Caramujos/parasitologia , Baço/parasitologia
12.
J Vet Med Sci ; 80(1): 156-163, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187698

RESUMO

Asian schistosomiasis caused by Schistosoma japonicum is a serious zoonotic disease endemic in China, the Philippines and parts of Indonesia. Mass drug administration in endemic areas resulted to decline in disease severity and intensity. The low intensity of infection limits the use of current parasitological methods for schistosomiasis diagnosis. Detection of parasite circulating antigens might provide more informative result as it may indicate the true status of infection. In this study, S. japonicum thioredoxin peroxidase-1 (SjTPx-1) a 22 kDa secreted antioxidant enzyme expressed throughout the life stages of the parasite was evaluated for its potential use as a biomarker for schistosomiasis japonica infection. Rabbit polyclonal antibody and mouse monoclonal antibodies (mAbs) were raised against the recombinant SjTPx-1 (rSjTPx-1). The antibodies produced against the recombinant antigen was confirmed to detect the native SjTPx-1 in crude adult worm lysate. Likewise, the specific binding of mAbs to parasite TPx-1 and not to mammalian peroxiredoxin-1 orthologues was also confirmed. The double antibody sandwich ELISA developed in this study was able to detect at least 1 ng/ml of rSjTPx-1. In addition, this method was able to detect the antigen from all serum samples of experimentally infected rabbit and mice. The diagnostic potential of SjTPx-1 in human clinical samples was also evaluated, in which 4 out of 10 stool-confirmed serum samples had detectable levels of the antigen. The results suggest that SjTPx-1 can be a potential biomarker for Asian zoonotic schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Peroxirredoxinas/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/diagnóstico , Animais , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Camundongos , Peroxirredoxinas/sangue , Coelhos , Esquistossomose Japônica/imunologia , Zoonoses/diagnóstico , Zoonoses/imunologia
13.
PLoS Negl Trop Dis ; 11(7): e0005749, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28692692

RESUMO

BACKGROUND: Microsatellites have been found to be useful in determining genetic diversities of various medically-important parasites which can be used as basis for an effective disease management and control program. In Asia and Africa, the identification of different geographical strains of Schistosoma japonicum, S. haematobium and S. mansoni as determined through microsatellites could pave the way for a better understanding of the transmission epidemiology of the parasite. Thus, the present study aims to apply microsatellite markers in analyzing the populations of S. japonicum from different endemic areas in the Philippines for possible strain differentiation. METHODOLOGY/ PRINCIPAL FINDINGS: Experimental mice were infected using the cercariae of S. japonicum collected from infected Oncomelania hupensis quadrasi snails in seven endemic municipalities. Adult worms were harvested from infected mice after 45 days of infection and their DNA analyzed against ten previously characterized microsatellite loci. High genetic diversity was observed in areas with high endemicity. The degree of genetic differentiation of the parasite population between endemic areas varies. Geographical separation was considered as one of the factors accounting for the observed difference between populations. Two subgroups have been observed in one of the study sites, suggesting that co-infection with several genotypes of the parasite might be present in the population. Clustering analysis showed no particular spatial structuring between parasite populations from different endemic areas. This result could possibly suggest varying degrees of effects of the ongoing control programs and the existing gene flow in the populations, which might be attributed to migration and active movement of infected hosts from one endemic area to another. CONCLUSIONS/ SIGNIFICANCE: Based on the results of the study, it is reasonable to conclude that genetic diversity could be one possible criterion to assess the infection status in highly endemic areas. Genetic surveillance using microsatellites is therefore important to predict the ongoing gene flow and degree of genetic diversity, which indirectly reflects the success of the control program in schistosomiasis-endemic areas.


Assuntos
Cercárias/isolamento & purificação , Repetições de Microssatélites , Schistosoma japonicum/classificação , Caramujos/parasitologia , Animais , Coinfecção/epidemiologia , Feminino , Variação Genética , Genótipo , Geografia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Filipinas , Schistosoma japonicum/genética , Schistosoma japonicum/isolamento & purificação , Esquistossomose Japônica/epidemiologia
15.
Exp Parasitol ; 154: 62-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25913091

RESUMO

Rapid diagnostic tests (RDTs) have been considered as an ideal alternative for light microscopy to detect malaria parasites especially in remote areas. The development and improvement of RDTs is an area of intensive research in the last decade. To date, few parasite proteins have been targeted in RDTs which are known to have certain deficiencies and made the researchers to look for other promising candidates to address this problem. Plasmodium falciparum thioredoxin peroxidase 1 (PfTPx-1) is abundantly expressed in the cytoplasm of the parasite and well conserved across Plasmodium species, making this antigen a promising target for malaria diagnosis. Several monoclonal antibodies (mAbs) were produced against PfTPx-1. The binding affinities of mAbs were measured. Several immunochromatographic tests (ICTs) were developed using different combination of mAbs. All mAbs showed promising affinities to be used for diagnosis. The sensitivities of ICTs were evaluated using recombinant PfTPx-1 whose results lead us to the preparation of 4 different ICTs. These tests showed positive reaction with P. falciparum in vitro culture supernatant indicating the release of PfTPx-1 during schizont rupture. Altogether, these findings suggest that PfTPx-1 is a promising biomarker to diagnose P. falciparum infection. However, the diagnostic performance of this antigen should be further validated using clinical samples.


Assuntos
Anticorpos Monoclonais , Malária Falciparum/diagnóstico , Peroxirredoxinas/imunologia , Plasmodium falciparum/enzimologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Western Blotting , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/imunologia , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/imunologia , Plasmodium vivax/enzimologia , Plasmodium vivax/imunologia , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
16.
Parasitol Res ; 114(3): 1225-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595656

RESUMO

The zoonotic characteristic of the human parasite Schistosoma japonicum infecting a significant number of wild and domestic animals highlights the need to develop a unified surveillance in multiple host species for a strengthened schistosomiasis control. It has been shown in several studies that water buffaloes and dogs are considered important reservoirs in the transmission of the schistosome parasite to humans. Recombinant antigens like thioredoxin peroxidase-1 (SjTPx-1) and tandem repeat proteins (Sj1TR, Sj7TR) have been shown to be good diagnostic antigens individually in humans, water buffaloes, and dogs in previous studies. Mixing these antigens together in a cocktail-ELISA might not only improve their diagnostic potentials but rather produce a multi-host species detection means for zoonotic schistosomiasis. In this study, we aimed to develop and optimize cocktail-ELISA by testing different combinations of these recombinant antigens in humans, water buffaloes, and dogs. As compared with the diagnostic potential calculated for each of the three recombinant antigens used, their combination has presented improved specificities, positive predictive values, and kappa values. Using samples collected from various endemic areas in the Philippines, results showed that the combination of SjTPx-1/Sj7TR/Sj1TR has the highest sensitivity in humans (84.1 %), water buffaloes, and dogs (80 %) and specificity (100 %) in all host species. This study therefore suggests the use of cocktail-ELISA in improving the zoonotic surveillance in schistosomiasis endemic areas.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Especificidade de Hospedeiro , Esquistossomose Japônica/veterinária , Animais , Animais Domésticos/parasitologia , Búfalos/parasitologia , Cães , Humanos , Filipinas/epidemiologia , Schistosoma japonicum/isolamento & purificação , Esquistossomose Japônica/diagnóstico , Esquistossomose Japônica/epidemiologia , Esquistossomose Japônica/parasitologia , Sensibilidade e Especificidade
17.
Parasitol Int ; 64(3): 290-4, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25284813

RESUMO

Phenotypic observation of thioredoxin peroxidase-1 (TPx-1) gene-disrupted Plasmodium berghei (TPx-1 KO) in the liver-stage was performed with an in vitro infection system in order to investigate defective liver-stage development in a mouse infection model. Indirect immunofluorescence microscopy assay with anti-circumsporozoite protein antibody revealed that in the liver schizont stage, TPx-1 KO parasite cells were significantly smaller than cells of the wild-type parent strain (WT). Indirect immunofluorescence microscopy assay with anti-merozoite surface protein-1 antibody, which was used to evaluate late schizont-stage development, indicated that TPx-1 KO schizont development was similar to WT strain development towards the merozoite-forming stage (mature schizont). However, fewer merozoites were produced in the mature TPx-1 KO schizont than in the mature WT schizont. Taken together, the results suggest that TPx-1 may be involved in merozoite formation during liver schizont development.


Assuntos
Fígado/parasitologia , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Animais , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Proteína 1 de Superfície de Merozoito/imunologia , Merozoítos/crescimento & desenvolvimento , Camundongos , Fenótipo , Plasmodium berghei/enzimologia , Roedores , Esquizontes/citologia , Esquizontes/crescimento & desenvolvimento , Esquizontes/metabolismo
19.
Parasitol Res ; 113(11): 3957-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092384

RESUMO

Malaria parasites are under oxidative attack throughout their life cycle in human body and mosquito vector. Therefore, Plasmodium antioxidant defenses are crucial for its survival and being considered as interesting target for antimalarial drug design. Plasmodium knowlesi has emerged recently from its simian host to human in Southeast Asia and has been recognized as the fifth Plasmodium species that can cause human malaria. In this study, we cloned and characterized thioredoxin peroxidase 1 from P. knowlesi (PkTPx-1). PkTPx-1 gene was cloned, and recombinant protein was produced by heterologous overexpression in Escherichia coli. The recombinant protein was used for evaluation of enzymatic activity and polyclonal antibody production. Using the recombinant PkTPx-1 protein, its antioxidant activity was confirmed in a mixed-function oxidation assay where PkTPx-1 prevented nicking of DNA by hydroxyl radicals. PkTPx-1 was able to bind to double-strand DNA and RNA and had RNA chaperone activity in a nucleic acid melting assay indicating new function of PkTPx-1 other than antioxidant activity. Using specific polyclonal antibodies, it was indicated that PkTPx-1 is expressed in the cytoplasm of the parasite. Altogether, these results suggest that PkTPx-1 not only protects the parasite from the adverse effects of reactive oxygen species but also has RNA chaperone activity.


Assuntos
Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Plasmodium knowlesi/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Sudeste Asiático , Clonagem Molecular , DNA/metabolismo , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética
20.
Trop Med Health ; 41(2): 55-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23874139

RESUMO

Prompt and accurate diagnosis of malarial patients is a crucial factor in controlling the morbidity and mortality of the disease. Effective treatment decisions require a correct diagnosis among mixed-species malarial patients. Differential diagnosis is particularly important in cases of Plasmodium vivax, a species that shares endemicity with P. falciparum in most endemic areas. Moreover, it is difficult to identify P. knowlesi on the basis of morphology alone, and rapid diagnostic tests are still not available for this malaria species. Therefore, the development of diagnostic tests applicable to the field is urgently needed. 1-Cys peroxiredoxin (1-Cys-Prx) in P. falciparum is abundantly expressed in the mature asexual stages, making it a promising candidate as a diagnostic antigen. In this study, we produced five monoclonal antibodies (mAbs) against P. falciparum 1-Cys-Prx (Pf1-Cys-Prx) by immunizing BALB/c mice with recombinant Pf1-Cys-Prx and subsequent hybridoma production. Cross reactivity of established mAbs with the orthologous molecule of Pf1-Cys-Prx in P. vivax (Pv1-Cys-Prx) and P. knowlesi (Pk1-Cys-Prx) was examined. Western blot analyses showed that three mAbs reacted with Pv1-Cys-Prx and Pk1-Cys-Prx but two mAbs did not. These results indicate that the two mAbs were effective in differentiating P. falciparum from P. vivax and P. knowlesi and could be used in differential diagnosis as well as comparative molecular studies of human Plasmodium species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...