Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740974

RESUMO

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world's longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.


Assuntos
Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Biomassa , Produção Agrícola/estatística & dados numéricos , Oryza/genética
2.
Field Crops Res ; 220: 46-56, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29725160

RESUMO

Rice is the staple food for almost half of the world population. In South and South East Asia, about 40% of rice production is from deltaic regions that are vulnerable to salt stress. A quantitative approach was developed for characterizing genotypic variability in biomass production, leaf transpiration rate and leaf net photosynthesis responses to salinity during the vegetative stage, with the aim of developing efficient screening protocols to accelerate breeding varieties adapted to salt-affected areas. Three varieties were evaluated in pots under greenhouse conditions and in the field, with average soil salinity ranging from 2 to 12 dS m-1. Plant biomass, net photosynthesis rate, leaf transpiration rate and leaf conductance were measured at regular intervals. Crop responses were fitted using a logistic function with three parameters: 1) maximum rate under control conditions (Ymax), 2) salinity level for 50% of reduction (b), and 3) rate of reduction (a). Variation in the three parameters correlated significantly with variation in plant biomass production under increasing salinity. Salt stress levels that caused 50% reduction in net leaf photosynthesis and transpiration rates were higher in the tolerant genotype BRRI Dhan47 (16.5 dS m-1 and 14.3 dS m-1, respectively) than the sensitive genotype IR29 (11.1 dS m-1 and 6.8 dS m-1). In BRRI Dhan47, the threshold beyond which growth was significantly reduced was above 5 dS m-1 and the rate of growth reduction beyond this threshold was as low as 4% per unit increase in salinity. This quantitative approach to screening for salinity tolerance in rice offers a means to better understand rice growth under salt stress and, using simulation modelling, can provide an improved tool for varietal characterization.

3.
Field Crops Res ; 229: 27-36, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31007364

RESUMO

The rice model ORYZA v3 has been recently improved to account for salt stress effect on rice crop growth and yield. This paper details subsequent studies using the improved model to explore opportunities for improving salinity tolerance in rice. The objective was to identify combinations of plant traits influencing rice responses to salinity and to quantify yield gains by improving these traits. The ORYZA v3 model was calibrated and validated with field experimental data collected between 2012 and 2014 in Satkhira, Bangladesh and Infanta, Quezon, Philippines, then used for simulations scenario considering virtual varieties possessing different combinations of crop model parameter values related to crop salinity response and the soil salinity dynamic observed at Satkhira site. Simulation results showed that (i) short duration varieties could escape end of season increase in salinity, while long duration varieties could benefit from an irrigated desalinization period occurring during the later stages of crop growth in the Satkhira situation; (ii) combining short duration growth with salt tolerance (bTR and bPN) above 12 dS m-1 and a resilience trait (aSalt) of 0.11 in a variety, allows maintenance of 65-70% of rice yield under increasing salinity levels of up to 16 dS m-1; and (iii) increasing the value of the tolerance parameter b by 1% results in 0.3-0.4% increase in yield. These results are relevant for defining directions to increase rice productivity in saline environments, based on improvements in phenology and quantifiable salt tolerance traits.

4.
Agric For Meteorol ; 237-238: 246-256, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28469286

RESUMO

The worldwide usage of and increasing citations for ORYZA2000 has established it as a robust and reliable ecophysiological model for predicting the growth and yield of rice in an irrigated lowland ecosystem. Because of its focus on irrigated lowlands, its computation ability is limited to the representation of the effects of the highly dynamic environments of upland, rainfed, and aerobic ecosystems on rice growth and yield. Additional modules and routines to quantify daily variations in soil temperature, carbon, nitrogen, and environmental stresses were then developed and integrated into ORYZA2000 to capture their effects on primary production, assimilate allocation, root growth, and water and nitrogen uptake. The newest version has been renamed "ORYZA version 3 (v3)". Case studies have shown that the root mean square errors (RMSE) between simulated and measured values for total biomass and yields ranged from 11.2% to 16.6% across experiments in non-drought and drought and/or nitrogen-deficient environments. ORYZA (v3) showed a significant reduction of the RMSE by at least 20%, thereby improving the model's capability to represent values measured under extreme conditions. It has also been significantly improved in representing the dynamics of soil water and crop leaf nitrogen contents. With an enhanced capability to simulate rice growth and development and predict yield in non-stressed, water-stressed and nitrogen-stressed environments, ORYZA (v3) is a reliable successor of ORYZA2000.

5.
PLoS One ; 11(10): e0164456, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27723774

RESUMO

Multi-Environment Trials (MET) are conventionally used to evaluate varietal performance prior to national yield trials, but the accuracy of MET is constrained by the number of test environments. A modeling approach was innovated to evaluate varietal performance in a large number of environments using the rice model ORYZA (v3). Modeled yields representing genotype by environment interactions were used to classify the target population of environments (TPE) and analyze varietal yield and yield stability. Eight Green Super Rice (GSR) and three check varieties were evaluated across 3796 environments and 14 seasons in Southern Asia. Based on drought stress imposed on rainfed rice, environments were classified into nine TPEs. Relative to the check varieties, all GSR varieties performed well except GSR-IR1-5-S14-S2-Y2, with GSR-IR1-1-Y4-Y1, and GSR-IR1-8-S6-S3-Y2 consistently performing better in all TPEs. Varietal evaluation using ORYZA (v3) significantly corresponded to the evaluation based on actual MET data within specific sites, but not with considerably larger environments. ORYZA-based evaluation demonstrated the advantage of GSR varieties in diverse environments. This study substantiated that the modeling approach could be an effective, reliable, and advanced approach to complement MET in the assessment of varietal performance on spatial and temporal scales whenever quality soil and weather information are accessible. With available local weather and soil information, this approach can also be adopted to other rice producing domains or other crops using appropriate crop models.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Oryza/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...