Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3137-3143, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37036942

RESUMO

Twisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases thanks to the multiple degrees of freedom available for controlling their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and trilayer graphene. Furthermore, we demonstrate that the manipulation of nanoparticles located at certain stacking domains can locally reconfigure the moiré superlattice in their vicinity at the micrometer scale. Our findings establish a new approach to controlling moiré-assisted chemistry and nanoengineering.

2.
Viruses ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298791

RESUMO

Using the recently proposed Susceptible-Asymptomatic-Infected-Vaccinated-Removed (SAIVR) model, we study the impact of key factors affecting COVID-19 vaccine rollout effectiveness and the susceptibility to resurgent epidemics. The SAIVR model expands the widely used Susceptible-Infectious-Removed (SIR) model for describing epidemics by adding compartments to include the asymptomatic infected (A) and the vaccinated (V) populations. We solve the model numerically to make predictions on the susceptibility to resurgent COVID-19 epidemics depending on initial vaccination coverage, importation loads, continuing vaccination, and more contagious SARS-CoV-2 variants, under persistent immunity and immunity waning conditions. The parameters of the model represent reported epidemiological characteristics of the SARS-CoV-2 virus such as the disease spread in countries with high levels of vaccination coverage. Our findings help explain how the combined effects of different vaccination coverage levels and waning immunity lead to distinct patterns of resurgent COVID-19 epidemics (either surges or endemic), which are observed in countries that implemented different COVID-19 health policies and achieved different vaccinated population plateaus after the vaccine rollouts in the first half of 2021.


Assuntos
COVID-19 , Vacinas contra Influenza , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Surtos de Doenças/prevenção & controle , Vacinação
3.
Chaos Solitons Fractals ; 154: 111621, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34815624

RESUMO

Population-wide vaccination is critical for containing the SARS-CoV-2 (COVID-19) pandemic when combined with restrictive and prevention measures. In this study we introduce SAIVR, a mathematical model able to forecast the COVID-19 epidemic evolution during the vaccination campaign. SAIVR extends the widely used Susceptible-Infectious-Removed (SIR) model by considering the Asymptomatic (A) and Vaccinated (V) compartments. The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure. After training an unsupervised neural network to solve the SAIVR differential equations, a supervised framework then estimates the optimal conditions and parameters that best fit recent infectious curves of 27 countries. Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels. The concept of herd immunity is questioned by studying future scenarios which involve different vaccination efforts and more infectious COVID-19 variants.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658375

RESUMO

The valence band maxima of most group VI transition metal dichalcogenide thin films remain at the Γ point all of the way from bulk to bilayer. In this paper, we develop a continuum theory of the moiré minibands that are formed in the valence bands of Γ-valley homobilayers by a small relative twist. Our effective theory is benchmarked against large-scale ab initio electronic structure calculations that account for lattice relaxation. As a consequence of an emergent [Formula: see text] symmetry, we find that low-energy Γ-valley moiré holes differ qualitatively from their K-valley counterparts addressed previously; in energetic order, the first three bands realize 1) a single-orbital model on a honeycomb lattice, 2) a two-orbital model on a honeycomb lattice, and 3) a single-orbital model on a kagome lattice.

5.
Eur Phys J Plus ; 135(8): 630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832319

RESUMO

We show how to include the Jahn-Teller coupling of moiré phonons to the electrons in the continuum model formalism which describes small-angle twisted bilayer graphene. These phonons, which strongly couple to the valley degree of freedom, are able to open gaps at most integer fillings of the four flat bands around the charge neutrality point. Moreover, we derive the full quantum mechanical expression of the electron-phonon Hamiltonian, which may allow accessing phenomena such as the phonon-mediated superconductivity and the dynamical Jahn-Teller effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...