Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microsc Microanal ; 21(2): 526-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25782348

RESUMO

This paper presents new developments on the provenance study of lapis lazuli started by our group in 2008: during the years a multi-technique approach has been exploited to obtain minero-petrographic characterization and creation of a database considering only rock samples of known provenance. Since the final aim of the study is to develop a method to analyze archeological findings and artworks made with lapis lazuli in a completely non-invasive way, ion beam analysis techniques were employed to trace the provenance of the raw material used for the production of artifacts. Continuing this goal and focusing the analysis on determination of more significant minero-chemical markers for the provenance study of trace elements in different minerals, the method was extended with the use of micro X-ray fluorescence (µ-XRF), to test the potential of the technique for this application. The analyzes were focused on diopside and pyrite in lapis lazuli samples of known provenance (Afghanistan, Tajikistan, and Siberia). In addition, µ-XRF data were compared with micro proton-induced X-ray emission (µ-PIXE) results to verify the agreement between the two databases and to compare the analytical performance of both techniques for this application.

3.
Anal Bioanal Chem ; 404(1): 277-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22644153

RESUMO

Broad beam ionoluminescence (IL) microscopy is a promising technique for the non-destructive characterisation of rocks and stone objects. Luminescence imaging by means of broad ion beams has been sporadically used by other authors but, to our knowledge, its potential has not yet been fully investigated, neither in geological science nor in other fields. The in-air broad beam IL microscope was developed and installed at the INFN-LABEC external microbeam in Florence. Similar to the cathodoluminescence (CL) microscope, the apparatus exploits a CCD colour camera collecting images (few square millimetres wide, with ~10-µm spatial resolution) of the luminescence emitted by the sample hit by a defocused megaelectron volt (MeV) proton beam. The main differences with the well-established and widespread CL are the possibility of working in air (no sampling or conductive coatings required) and the possibility of combining the analysis with microbeam analysis, such as, for example, µ-IL and µ-PIXE (particle-induced X-ray emission). To show the potential of the technique, IL images of thin sections of lapis lazuli are compared with those obtained by means of an in-vacuum cold CL. An application to the study of stone artworks is also reported. This technique and apparatus will provide a valuable help for interdisciplinary applications, e.g. in geological sciences and in the cultural heritage field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...