Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(17): 10069-10078, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416222

RESUMO

Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone.


Assuntos
Acetona , Ácido Vanílico , Polímeros de Fluorcarboneto , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
2.
Anal Chem ; 90(3): 1819-1826, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29280625

RESUMO

Endogenous volatile organic compounds (VOCs) such as acetone in exhaled human breath are associated with metabolic conditions in the bloodstream. Development of compact, rapid detectors of exhaled breath chemical composition in clinical settings is challenging due to the small sample size that can be collected during a single exhalation as well as spectroscopic interference by the abundance of water. In this paper, we show that the activity of a catalytic polymer membrane (Nafion 117) toward the heterogeneous condensation reaction of immobilized resorcinol reagent with gas-phase acetone can be preserved even at 100% ambient relative humidity through the incorporation of organic acids such as vanillic or tiglic. The reaction produces a colored flavan product that permits highly selective and sensitive correlation to acetone concentration in exhaled breath. Such behavior suggests solvent displacement, analogous to homogeneous liquid-phase systems. However, unlike classic acid-base equilibria, the extent of optode water resistance is shown to increase with the pKa of the imbibed organic acid while peak signal intensity of the imbibed acid undergoes a bathochromic shift to longer wavelengths. These observations are consistent with competition between organic acid deprotonation by water in a mixed solvent system on the one hand and immobilization on the other. Finally, we demonstrate how when applied to the direct chemical analysis of acetone in exhaled human breath, the approach yields excellent correlation to blood glucose in diabetics.


Assuntos
Acetona/análise , Testes Respiratórios/instrumentação , Polímeros de Fluorcarboneto/química , Acetona/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Testes Respiratórios/métodos , Catálise , Diabetes Mellitus/metabolismo , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Resorcinóis/química , Adulto Jovem
3.
Langmuir ; 29(52): 16150-9, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24313249

RESUMO

The promotion of the electrocatalytic ethanol oxidation reaction (EOR) on extended single-crystal Pt surfaces and dispersed Pt nanoparticles by Sn under acidic conditions is well known. However, the correlation of Sn coverage on Pt nanoparticle electrocatalysts to their size has proven difficult. The reason is that previous investigations have typically relied on commercially difficult to reproduce electrochemical treatments of prepared macroscopic electrodes to adsorb Sn onto exposed Pt surfaces. We demonstrate here how independent control over both Sn coverage and particle size can yield a significant enhancement in EOR activity in an acidic electrolyte relative to previously reported electrocatalysts. Our novel approach uses electroless nanoparticle synthesis where surface-adsorbed Sn is intrinsic to Pt particle formation. Sn serves as both a reducing agent and stabilizing ligand, producing particles with a narrow particle size distribution in a size range where the mass-specific electrocatalytic activity can be maximized (ca. 1-4 nm) as a result of the formation of a fully developed Sn shell. The extent of fractional Sn surface coverage on carbon-supported Pt nanoparticles can be systematically varied through wet-chemical treatment subsequent to nanoparticle formation but prior to incorporation into macroscopic electrodes. EOR activity for Pt nanoparticles is found to be optimum at a fractional Sn surface coverage of ca. 0.6. Furthermore, the EOR activity is shown to increase with Pt particle size and correlate with the active area of available Pt (110) surface sites for the corresponding Sn-free nanoparticles. The maximum area- and mass-specific EOR activities for the most active catalyst investigated were 17.9 µA/cm(2)Pt and 12.5 A/gPt, respectively, after 1 h of use at 0.42 V versus RHE in an acidic electrolyte. Such activity is a substantial improvement over that of commercially available Pt, Pt-Sn, and Pt-Ru alloy catalysts under either acidic or alkaline conditions.

4.
Talanta ; 112: 26-30, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23708532

RESUMO

Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis.


Assuntos
Acetona/análise , Testes Respiratórios , Diabetes Mellitus/diagnóstico , Expiração , Polímeros de Fluorcarboneto/química , Gases/análise , Membranas Artificiais , Dispositivos Ópticos , Sistemas Automatizados de Assistência Junto ao Leito , Resorcinóis/química
5.
Langmuir ; 27(10): 5781-91, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21495652

RESUMO

Monodisperse Pt nanoparticles with atomic structures that span the cluster to crystal transition have recently been synthesized in electrostatically stabilized, aqueous-based suspensions. In the present study, the anionic charge from the stabilizing SnCl(2) sheath adsorbed on the surface of these particles is used for the first time to assemble Pt directly onto porous carbon supports via electrostatic assembly. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals that these assemblies have substantially higher Pt-C dispersions than obtained from precipitation methods commonly used for commercial electrocatalyst systems. Energy dispersive spectroscopy (EDS) and inductively coupled plasma-mass spectrometry (ICP-MS) are used to determine that loadings of 10-30% by weight Pt (particle packing fractions from 0.05 to 0.25) are obtained through a single electrostatic application of these particles on Vulcan carbon, depending on particle size. The highest average oxygen reduction reaction (ORR) mass activity obtained using this approach is 90.4 A/g(Pt) at 0.9 V vs RHE in 0.1 M perchloric acid is with 1-2 nm particles that exhibit a transitional atomic structure. This activity compares to an average value of 74.0 A/g(Pt) obtained from densely packed electrostatic layer-by-layer (LbL) assemblies of unsupported particles and 36.7 A/g(Pt) commercial Vulcan electrocatalyst from Tanaka Kikinzoku Kogyo (TKK). Enhanced activity is observed with electrostatic assembly of any particle size on Vulcan relative to unsupported or commercial electrocatalyst with comparable durability. Such enhanced activity is attributed to improved reactant accessibility to the catalyst surface due to the increase in particle dispersion. An extinction coefficient of 7.41 m(2)/g at 352 nm is obtained across the entire cluster to crystal transition from 20 atom clusters to 2.9 nm single crystal nanoparticles, indicating that observed variation in ORR activity with particle size may be associated primarily with changes in atomic surface structure as opposed to the metallic character of the nanoparticles as assessed by UV-vis spectroscopy.

6.
Anal Chem ; 82(14): 6265-72, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20560534

RESUMO

Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a maximum conversion rate of one ambient TMA molecule for every two membrane-immobilized resorcinol molecules is observed in 15 min.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Polímeros de Fluorcarboneto/química , Gases/química , Anidridos Ftálicos/análise , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Catálise , Resorcinóis/química , Termodinâmica
7.
J Colloid Interface Sci ; 349(1): 148-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20542280

RESUMO

Two types of silica nanoparticles having differing concentrations of ionizable surface groups are used to investigate the interplay between nanoparticle surface charge and solvent dielectric constant in nanostructure development during layer-by-layer assembly with a cationic polyacrylamide. Zeta (zeta) potential measurements are used to determine the extent of silanol dissociation with pH. For 19-nm-diameter X-Tec 3408 silica nanoparticles from Nano-X GmbH (NanoX), complete dissociation yields a zeta-potential value of about -44mV and occurs between pH 5 and 6 in 50% ethanol-in-water mixture by volume. By contrast, 65-nm-diameter polishing silica from Electron Microscopy Supply (EMS) has a zeta potential that does not equilibrate even up to pH 7 with a value of -59mV under otherwise similar solution conditions. The more negative zeta potential at a given pH is found to substantially reduce nanoparticle adsorption. This behavior is opposite that observed when the dielectric constant of the suspension is decreased, independent of particle size. Nanoparticle surface chemical heterogeneity is discussed as a plausible explanation for such seriously discrepant behavior and the effects on multilayer electrical contact resistance for proton-exchange membrane (PEM) fuel-cell coating applications are presented.

8.
Langmuir ; 25(8): 4384-92, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19271752

RESUMO

Layer-by-layer (LBL) assembly of silica nanoparticles is investigated as a means of controlling the surface wetting properties of gold electroplated onto 316 L stainless-steel substrates while maintaining a low electrical surface contact resistance. The strong polyelectrolyte acrylamide/beta-methacryl-oxyethyl-trimethyl-ammonium copolymer is used as the cationic binder. The impact of silica nanoparticle zeta (zeta) potential for a range of -37.1 to 5.9 mV in the thickness, wettability, and contact resistance of the final LBL-assembled coatings is presented. The zeta potential is varied by altering both the pH and alcohol (ethanol) content of the silica suspensions and polymer suspension, consistent with the predictions of the Debye-Huckel equation. Nanoparticle adsorption is found to occur rapidly, with surface coverage equilibration obtained after only 1 min and uptake that is nearly linear with respect to the number of bilayers deposited. An increase in the absolute value of the (negative) zeta potential in the silica suspension is found to increase the bilayer thickness to an average value as high as 82% of the individual nanoparticle diameter for the smaller nanoparticles investigated, suggesting that nearly complete surface coverage may be achieved after the application of only a single nanoparticle-polymer bilayer (a coating thickness as low as 15.6 nm) and that nanoparticle adsorption is enhanced by electrostatic attraction between substrate and adsorbate. Counterintuitively, a more porous bilayer structure is observed if the zeta potential of the previously deposited nanoparticles is increased while the substrate is immersed in the cationic copolymer suspension, suggesting that copolymer adsorption in inhibited by substrate-solvent interactions. Wetting measurements demonstrate that silica LBL assembly results in a substantial reduction in contact angle from 84 degrees on the bare substrate surface to as low as 15 degrees after the application of a single bilayer and 7 degrees after the application of eight bilayers. A monotonic increase in coating contact resistance is observed with an increase in the thickness with a characteristic volumetric electrical through-plane resistivity of as low as 1.63 kOmega.cm obtained from contact resistance measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...