Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(19): e2022GL100014, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36582259

RESUMO

An interplanetary shock can abruptly compress the magnetosphere, excite magnetospheric waves and field-aligned currents, and cause a ground magnetic response known as a sudden commencement (SC). However, the transient (<∼1 min) response of the ionosphere-thermosphere system during an SC has been little studied due to limited temporal resolution in previous investigations. Here, we report observations of a global reversal of ionospheric vertical plasma motion during an SC on 24 October 2011 using ∼6 s resolution Super Dual Auroral Radar Network ground scatter data. The dayside ionosphere suddenly moved downward during the magnetospheric compression due to the SC, lasting for only ∼1 min before moving upward. By contrast, the post-midnight ionosphere briefly moved upward then moved downward during the SC. Simulations with a coupled geospace model suggest that the reversed E ⃗ × B ⃗ vertical drift is caused by a global reversal of ionospheric zonal electric field induced by magnetospheric compression during the SC.

2.
Phys Rev Lett ; 129(13): 135101, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206419

RESUMO

Electromagnetic ion cyclotron waves are expected to pitch-angle scatter and cause atmospheric precipitation of relativistic (>1 MeV) electrons under typical conditions in Earth's radiation belts. However, it has been a long-standing mystery how relativistic electrons in the hundreds of keV range (but <1 MeV), which are not resonant with these waves, precipitate simultaneously with those >1 MeV. We demonstrate that, when the wave packets are short, nonresonant interactions enable such scattering of hundred-keV electrons by introducing a spread in wave number space. We generalize the quasilinear diffusion model to include nonresonant effects. The resultant model exhibits an exponential decay of the scattering rates extending below the minimum resonant energy depending on the shortness of the wave packets. This generalized model naturally explains observed nonresonant electron precipitation in the hundreds of keV concurrent with >1 MeV precipitation.

3.
Geophys Res Lett ; 49(1): e2021GL096583, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865078

RESUMO

The intrinsic temporal nature of magnetic reconnection at the magnetopause has been an active area of research. Both temporally steady and intermittent reconnection have been reported. We examine the steadiness of reconnection using space-ground conjunctions under quasi-steady solar wind driving. The spacecraft suggests that reconnection is first inactive, and then activates. The radar further suggests that after activation, reconnection proceeds continuously but unsteadily. The reconnection electric field shows variations at frequencies below 10 mHz with peaks at 3 and 5 mHz. The variation amplitudes are ∼10-30 mV/m in the ionosphere, and 0.3-0.8 mV/m at the equatorial magnetopause. Such amplitudes represent 30%-60% of the peak reconnection electric field. The unsteadiness of reconnection can be plausibly explained by the fluctuating magnetic field in the turbulent magnetosheath. A comparison with a previous global hybrid simulation suggests that it is the foreshock waves that drive the magnetosheath fluctuations, and hence modulate the reconnection.

4.
Nat Commun ; 13(1): 1611, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338136

RESUMO

Energetic electron precipitation from Earth's outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt's energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

5.
J Geophys Res Space Phys ; 126(6): e2021JA029117, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34434687

RESUMO

The role a geospace plume in influencing the efficiency of magnetopause reconnection is an open question with two contrasting theories being debated. A local-control theory suggests that a plume decreases both local and global reconnection rates, whereas a global-control theory argues that the global reconnection rate is controlled by the solar wind rather than local physics. Observationally, limited numbers of point measurements from spacecraft cannot reveal whether a local change affects the global reconnection. A distributed observatory is hence needed to assess the validity of the two theories. We use THEMIS and Los Alamos National Laboratory spacecraft to identify the occurrence of a geospace plume and its contact with the magnetopause. Global evolution and morphology of the plume is traced using GPS measurements. SuperDARN is then used to monitor the distribution and the strength of dayside reconnection. Two storm-time geospace plume events are examined and show that as the plume contacts the magnetopause, the efficiency of reconnection decreases at the contact longitude. The amount of local decrease is 81% and 68% for the two events, and both values are consistent with the mass loading effect of the plume if the plume's atomic mass is ∼4 amu. Reconnection in the surrounding is enhanced, and when the solar wind driving is stable, little variation is seen in the cross polar cap potential. This study illuminates a pathway to resolve the role of cold dense plasma on solar wind-magnetosphere coupling, and the observations suggest that plumes redistribute magnetopause reconnection activity without changing the global strength substantially.

6.
Sci Rep ; 11(1): 1610, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462252

RESUMO

Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30,000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms.

7.
J Geophys Res Space Phys ; 126(9): e2021JA029208, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35865829

RESUMO

The properties of cold, dense, low energy ( < 150 eV) ions within Earth's magnetosphere between 6 and 14 R E distance are examined using data sampled by Time History of Events and Macroscale Interactions during Substorms spacecraft during a new low-energy plasma mode that operated from June 2016 to July 2017. These ions are a persistent feature of the magnetosphere during enhanced solar wind dynamic pressure and/or magnetospheric activity. These ions have densities ranging from 0.5 to tens of c m - 3 , with a mean of ∼ 1 c m - 3 and temperatures of a few to tens of eV, with a mean of ∼ 13 eV. These yield cold to hot ion density and temperature ratios that are 4.4 and 4 × 1 0 - 3 , respectively. Comparisons reveal that the cold ion densities are positively correlated with solar wind dynamic pressure. These ions are organizable, according to their pitch-angle distribution, as being transverse/convection dominated (interpreted as plume plasma) or magnetic field-aligned (FAL) (uni- or bi-directional characteristic of ion outflow or cloak plasma). Transverse ions preferentially occur in the prenoon to dusk sectors during sustained active magnetospheric conditions driven by enhanced solar wind dynamic pressure under southward B z and westward B y IMF orientations. Transverse ion velocities (reaching several tens of km/s) have a westward directed tendency with a slight radially outward preference. In contrast FAL ions preferentially occur from morning to noon during northward IMF orientations, enhanced solar wind dynamic pressure, and quiet magnetospheric conditions within several hours after moderate to strong activity. The FAL ions also have bulk velocities ≲ 30 km/s, with an eastward and radially outward tendency.

9.
Nat Commun ; 10(1): 4672, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611553

RESUMO

Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Here we report, using NASA's Van Allen Probe measurements, that banded chorus waves are commonly accompanied by two separate anisotropic electron components. Using numerical simulations, we show that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppress the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.

10.
Sci Adv ; 5(7): eaaw1368, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281887

RESUMO

Plasma shocks are the primary means of accelerating electrons in planetary and astrophysical settings throughout the universe. Which category of shocks, quasi-perpendicular or quasi-parallel, accelerates electrons more efficiently is debated. Although quasi-perpendicular shocks are thought to be more efficient electron accelerators, relativistic electron energies recently observed at quasi-parallel shocks exceed theoretical expectations. Using in situ observations at Earth's bow shock, we show that such relativistic electrons are generated by the interaction between the quasi-parallel shock and a related nonlinear structure, a foreshock transient, through two betatron accelerations. Our observations show that foreshock transients, overlooked previously, can increase electron acceleration efficiency at a quasi-parallel shock by an order of magnitude. Thus, quasi-parallel shocks could be more important in generating relativistic electrons, such as cosmic ray electrons, than previously thought.

11.
Geophys Res Lett ; 42(15): 6170-6179, 2015 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27656009

RESUMO

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ∼ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ∼40 s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

12.
Science ; 321(5891): 931-5, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18653845

RESUMO

Magnetospheric substorms explosively release solar wind energy previously stored in Earth's magnetotail, encompassing the entire magnetosphere and producing spectacular auroral displays. It has been unclear whether a substorm is triggered by a disruption of the electrical current flowing across the near-Earth magnetotail, at approximately 10 R(E) (R(E): Earth radius, or 6374 kilometers), or by the process of magnetic reconnection typically seen farther out in the magnetotail, at approximately 20 to 30 R(E). We report on simultaneous measurements in the magnetotail at multiple distances, at the time of substorm onset. Reconnection was observed at 20 R(E), at least 1.5 minutes before auroral intensification, at least 2 minutes before substorm expansion, and about 3 minutes before near-Earth current disruption. These results demonstrate that substorms are likely initiated by tail reconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...