Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(5): 055901, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523980

RESUMO

In this work, we present a computational method, based on the Monte Carlo statistical approach, for calculating electron energy emission and yield spectra of metals, such as copper, silver and gold. The calculation of these observables proceeds via the Mott theory with a Dirac-Hartree-Fock spherical potential to deal with the elastic scattering processes, and by using the Ritchie dielectric approach to model the electron inelastic scattering events. In the latter case, the dielectric function, which represents the starting point for the evaluation of the energy loss, is obtained from experimental reflection electron energy loss spectra. The generation of secondary electrons upon ionization of the samples is also implemented in the calculation. A remarkable agreement is obtained between both theoretical and experimental electron emission spectra and yield curves.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 146: 187-91, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-25813175

RESUMO

The optimized conditions for the enhancement of the second harmonic generation in the composites of the orthorhombic δ-BiB3O6:Pr(3+) nanoparticles embedded in polyvinyl alcohol films and deposited on the AgGaGe2Se6, AgGaGe2.7Si0.3Se8 (90 mol.% AgGaGe3Se8 - 10 mol.% AgGaSi3Se8), and AgGaGe3Se8:Cu substrates were established. The highest second-order susceptibility was achieved during the Ag-Ga-Ge-Se crystalline substrates photo-illumination by nanosecond laser pulses of about 2900 nm wavelength. The effect was found to be completely reversible after the interruption of the photo-inducing stimulation. Complementary studies of Atomic Force Microscopy, AFM, X-ray Diffraction, XRD, and Fourier-Transform Infrared Spectroscopy, and DFT simulations of spectral dependences of the corresponding second-order nonlinear optical susceptibilities, were performed.


Assuntos
Bismuto/química , Boratos/química , Nanocompostos/química , Calcogênios/química , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Nano Lett ; 14(8): 4901-6, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25026051

RESUMO

We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

4.
J Chem Phys ; 140(24): 244704, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985665

RESUMO

Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

5.
Beilstein J Nanotechnol ; 5: 323-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778955

RESUMO

BACKGROUND: The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry, infrared and photoemission spectroscopy measurements. RESULTS: The chemical state of the nanowires is typical of the Fe2O3 phase and the stoichiometry changes towards a Fe3O4 phase by annealing above 440 K. The shape and morphology of the nanowires is not modified by moderate thermal treatment, as imaged by scanning electron microscopy. CONCLUSION: This complementary spectroscopy-microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...