Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28617349

RESUMO

The use of solid biomass fuels in cookstoves has been associated with chronic health impacts that disproportionately affect women worldwide. Solid fuel stoves that use wood, plant matter, and cow dung are commonly used for household cooking in rural Bangladesh. This study investigates the immediate effects of acute elevated cookstove emission exposures on pulmonary function. Pulmonary function was measured with spirometry before and during cooking to assess changes in respiratory function during exposure to cookstove emissions for 15 females ages 18-65. Cookstove emissions were characterized using continuous measurements of particulate matter (PM2.5-aerodynamic diameter <2.5 µm) concentrations at a 1 s time resolution for each household. Several case studies were observed where women ≥40 years who had been cooking for ≥25 years suffered from severe pulmonary impairment. Forced expiratory volume in one second over forced vital capacity (FEV1/FVC) was found to moderately decline (p = 0.06) during cooking versus non-cooking in the study cohort. The study found a significant (α < 0.05) negative association between 3- and 10-min maximum PM2.5 emissions during cooking and lung function measurements of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and FEV1/FVC obtained during cooking intervals. This study found that exposure to biomass burning emissions from solid fuel stoves- associated with acute elevated PM2.5 concentrations- leads to a decrease in pulmonary function, although further research is needed to ascertain the prolonged (e.g., daily, for multiple years) impacts of acute PM2.5 exposure on immediate and sustained respiratory impairment.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Pulmão/fisiopatologia , Material Particulado/efeitos adversos , Adulto , Bangladesh , Biomassa , Culinária , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/efeitos dos fármacos , Pessoa de Meia-Idade , Tamanho da Partícula , População Rural , Capacidade Vital
2.
Pulm Circ ; 5(2): 244-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26064450

RESUMO

Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.

3.
Can J Physiol Pharmacol ; 90(7): 903-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22734601

RESUMO

The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 µmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 µmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 µmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 µmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 µmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.


Assuntos
Artérias/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Compostos de Anilina/farmacologia , Animais , Cloretos/metabolismo , Cinética , Coelhos , Xantenos/farmacologia
4.
Adv Exp Med Biol ; 661: 31-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204722

RESUMO

Ca(2+)-activated Cl-() channels (Cl(Ca)) represent an important excitatory mechanism in vascular smooth muscle cells. Active accumulation of Cl-() by several classes of anion transporters results in an equilibrium potential for this ion about 30 mV more positive than the resting potential. Stimulation of Cl(Ca) channels leads to membrane depolarization, which enhances Ca(2+) entry through voltage-gated Ca(2+) channels and leads to vasoconstriction. Cl(Ca) channels can be activated by distinct sources of Ca(2+) that include (1) mobilization from intracellular Ca(2+) stores (ryanodine or inositol 1,4,5-trisphosphate [InsP(3)]) and (2) Ca(2+) entry through voltage-gated Ca(2+) channels or reverse-mode Na(+)/Ca(2+) exchange. The present study was undertaken to determine whether Ca(2+) influx triggered by store depletion (store-operated calcium entry, SOCE) activates Cl(Ca) channels in rabbit pulmonary artery (PA) smooth muscle. Classical store depletion protocols involving block of sarcoplasmic reticular Ca(2+) reuptake with thapsigargin (TG; 1 microM) or cyclopiazonic acid (CPA; 30 microM) led to a consistent nifedipine-insensitive contraction of intact PA rings and rise in intracellular Ca(2+) concentration in single PA myocytes that required the presence of extracellular Ca(2+). In patch clamp experiments, TG or CPA activated a time-independent nonselective cation current (I (SOC)) that (1) reversed between -10 and 0 mV; (2) displayed the typical "N"-shaped current-voltage relationship; and (3) was sensitive to the (I (SOC)) blocker by SKF-96365 (50 microM). In double-pulse protocol experiments, the amplitude of I (SOC) was varied by altering membrane potential during an initial step that was followed by a second constant step to +90 mV to register Ca(2+)-activated Cl(-) current, I (Cl(Ca)). The niflumic acid-sensitive time-dependent I (Cl(Ca)) at +90 mV increased in proportion to the magnitude of the preceding hyperpolarizing step, an effect attributed to graded membrane potential-dependent Ca(2+) entry through I (SOC) and confirmed in dual patch clamp and Fluo-5 experiments to record membrane current and free intracellular Ca(2+) concentration simultaneously. Reverse-transcription polymerase chain reaction (RT-PCR) experiments confirmed the expression of several molecular determinants of SOCE, including transient receptor potential canonical (TRPC) 1, TRPC4, and TRPC6; stromal interacting molecule (STIM) 1 and 2; and Orai1 and 2, as well as the novel and probable molecular candidates thought to encode for Cl(Ca) channels transmembrane protein 16A (TMEM16A) Anoctamin 1 (ANO1) and B (ANO2). Ourpreliminary investigation provides new evidence for a Ca(2+) entry pathway consistent with store-operated Ca(2+) entry signaling that can activate Ca(2+)-activated Cl-() channels in rabbit PA myocytes. We hypothesize that this mechanism may be important in the regulation of membrane potential, Ca(2+) influx, and tone in these cells under physiological and pathophysiological conditions.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Animais , Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Células Cultivadas , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Cloretos/metabolismo , Inibidores de Ciclo-Oxigenase/metabolismo , Indóis/metabolismo , Contração Muscular/fisiologia , Miócitos de Músculo Liso/citologia , Nifedipino/metabolismo , Ácido Niflúmico/metabolismo , Técnicas de Patch-Clamp , Coelhos , Vasodilatadores/metabolismo
5.
Exp Gerontol ; 44(3): 201-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19017540

RESUMO

Intracellular Ca(2+) signaling is important to perfusion pressure related arterial reactivity and to vascular disorders including hypertension, angina and ischemic stroke. We have recently shown that advancing-age leads to calcium signaling adaptations in mesenteric arterial myocytes from C57 BL/6 mice [Corsso, C.D., Ostrovskaya, O., McAllister, C.E., Murray, K., Hatton, W.J., Gurney, A.M., Spencer, N.J., Wilson, S.M., 2006. Effects of aging on Ca(2+) signaling in murine mesenteric arterial smooth muscle cells. Mech. Ageing Dev. 127, 315-323)] which may contribute to decrements in perfusion pressure related arterial contractility others have shown occur. Even still, the mechanisms underlying the changes in Ca(2+) signaling and arterial reactivity are unresolved. Ca(2+) transport and storage capabilities are thought to contribute to age-related Ca(2+) signaling dysfunctions in other cell types. The present studies were therefore designed to test the hypothesis that cytosolic and compartmental Ca(2+) homeostasis in mesenteric arterial myocytes changes with advanced age. The hypothesis was tested by performing digitalized fluorescence microscopy on mesenteric arterial myocytes isolated from 5- to 6-month and 29- to 30-month-old C57Bl/6 mice. The data provide evidence that with advanced age capacitative Ca(2+) entry and sarcoplasmic reticulum Ca(2+) storage are increased although sarcoplasmic reticulum Ca(2+) uptake and plasma membrane Ca(2+) extrusion are unaltered. Overall, the studies begin to resolve the mechanisms associated with age-related alterations in mesenteric arterial smooth muscle Ca(2+) signaling and their physiological consequences.


Assuntos
Envelhecimento/metabolismo , Sinalização do Cálcio/fisiologia , Artérias Mesentéricas/citologia , Miócitos de Músculo Liso/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Transporte Biológico Ativo , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Corantes Fluorescentes , Fura-2/farmacologia , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
6.
J Pharmacol Exp Ther ; 321(3): 1075-84, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17347326

RESUMO

Because chloride (Cl(-)) channel blockers such as niflumic acid enhance large-conductance Ca(2+)-activated potassium channels (BK(Ca)), the aim of this study was to determine whether there is a reciprocal modification of Ca(2+)-activated chloride Cl(-) currents (I(ClCa)) by two selective activators of BK(Ca). Single smooth muscle cells were isolated by enzymatic digestion from murine portal vein and rabbit pulmonary artery. The BK(Ca) activators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl-)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] and isopimaric acid (IpA) augmented macroscopic I(ClCa) elicited by pipette solutions containing [Ca(2+)](i) > 100 nM without any alteration in current kinetics. Enhanced currents recorded in the presence of NS1619 or IpA reversed at the theoretical Cl(-) equilibrium potential, which was shifted by approximately -40 mV upon replacement of the external anion with the more permeable thiocyanate anion. NS1619 increased the sensitivity of calcium-activated chloride channel (Cl(Ca)) to Ca(2+) (approximately 100 nM at +60 mV) and induced a leftward shift in their voltage dependence (approximately 80 mV with 1 micro Ca(2+)). Single-channel experiments revealed that NS1619 increased the number of open channels times the open probability of small-conductance (1.8-3.1 pS) Cl(Ca) without any alteration in their unitary amplitude or number of observable unitary levels of activity. These data, in addition to the established stimulatory effects of niflumic acid on BK(Ca), show that there is similarity in the pharmacology of calcium-activated chloride and potassium channels. Although nonspecific interactions are possible, one alternative hypothesis is that the channel underlying vascular I(ClCa) shares some structural similarity to the BK(Ca) or that the latter K(+) channel physically interacts with Cl(Ca).


Assuntos
Benzimidazóis/farmacologia , Ácidos Carboxílicos/farmacologia , Canais de Cloreto/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fenantrenos/farmacologia , Canais de Potássio Cálcio-Ativados/agonistas , Animais , Cálcio/farmacologia , Agonistas dos Canais de Cloreto , Relação Dose-Resposta a Droga , Eletrofisiologia , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Ácido Niflúmico/farmacologia , Veia Porta/citologia , Artéria Pulmonar/citologia , Coelhos
7.
J Gen Physiol ; 128(1): 73-87, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16801382

RESUMO

The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, I(ClCa) was evoked immediately upon membrane rupture but then exhibited marked rundown to approximately 20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5'-(beta,gamma-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, I(ClCa) was approximately 100% of initial levels. I(ClCa) recorded with AMP-PNP-containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in I(ClCa) was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater "on" rates, and voltage-dependent closing steps ("off" rates). Our model reproduced well the Ca2+ and voltage dependence of I(ClCa) as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl- channel complex influences current generation dramatically through one or more critical voltage-dependent steps.


Assuntos
Cálcio/fisiologia , Canais de Cloreto/fisiologia , Ativação do Canal Iônico/fisiologia , Miócitos de Músculo Liso/fisiologia , Trifosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/farmacologia , Animais , Cálcio/farmacologia , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Simulação por Computador , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação , Artéria Pulmonar/citologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...