Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(17)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883140

RESUMO

Single-molecule approaches for probing the free energy of confinement for polymers in a nanopore environment are critical for the development of nanopore biosensors. We developed a laser-based nanopore heating approach to monitor the free energy profiles of such a single-molecule sensor. Using this approach, we measure the free energy profiles of two distinct polymers, polyethylene glycol and water-soluble peptides, as they interact with the nanopore sensor. Polyethylene glycol demonstrates a retention mechanism dominated by entropy with little sign of interaction with the pore, while peptides show an enthalpic mechanism, which can be attributed to physisorption to the nanopore (e.g., hydrogen bonding). To manipulate the energetics, we introduced thiolate-capped gold clusters [Au25(SG)18] into the pore, which increases the charge and leads to additional electrostatic interactions that help dissect the contribution that enthalpy and entropy make in this modified environment. These observations provide a benchmark for optimization of single-molecule nanopore sensors.

2.
ACS Sens ; 2(9): 1319-1328, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28812356

RESUMO

Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.

3.
Anal Chem ; 88(5): 2645-51, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859160

RESUMO

Temperature studies coupled with resistive-pulse nanopore sensing enable the quantification of a variety of important thermodynamic properties at the single-molecule limit. Previous demonstrations of nanopore sensing with temperature control have utilized bulk chamber heating methodologies. This approach makes it difficult to rapidly change temperatures and enable optical access for other analytical techniques (i.e., single-molecule fluorescence). To address these issues, researchers have explored laser-based methodologies through either direct infrared (IR) absorption or plasmonic assisted heating. In this paper, we demonstrate the use of IR-based direct absorption heating with the DNA sensing capabilities of a biological nanopore. The IR heating enables rapid changes of the temperature in and around an α-hemolysin pore, and we use this to explore melting properties for short (≤50 bp) double-stranded DNA homopolymers. We also demonstrate that the IR heating enables one to measure the percentage of different-sized DNA molecules in a binary mixture.


Assuntos
DNA/análise , Nanoporos , Técnicas Biossensoriais/métodos , DNA/efeitos da radiação , Calefação , Raios Infravermelhos , Lasers , Tamanho da Partícula , Termodinâmica
4.
Biopolymers ; 104(4): 384-394, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25670241

RESUMO

Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, ß-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study, we investigated the effect of replacing Trp with ß-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with ß-(1-azulenyl)-L-alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the ß-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing ß-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the ß-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant impacts on structure or function of membrane interacting peptides.


Assuntos
Fluorescência , Bicamadas Lipídicas/química , Meliteno , Triptofano , Meliteno/análogos & derivados , Meliteno/química , Estrutura Secundária de Proteína , Triptofano/análogos & derivados , Triptofano/química
5.
Anal Chem ; 86(22): 11077-85, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25343748

RESUMO

Nanopore sensing is a label-free method for characterizing water-soluble molecules. The ability to accurately identify and characterize an analyte depends on the residence time of the molecule within the pore. It is shown here that when a Au25(SG)18 metallic cluster is bound to an α-hemolysin (αHL) nanopore, the mean residence time of polyethylene glycol (PEG) within the pore is increased by over 1 order of magnitude. This leads to an increase in the range of detectable PEG sizes and improves the peak resolution within the PEG-induced current blockade distribution. A model describing the relationship between the analyte residence time and the width of the peaks in the current blockade distribution is included. Finally, evidence is presented that shows the Coulombic interaction between the charged analyte and cluster plays an important role in the residence time enhancement, which suggests the cluster-based approach could be used to increase the residence time of a wide variety of charged analyte molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...