Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218241

RESUMO

Aquifer storage and recovery (ASR) is a promising approach for managing water resources that enhances water quality through biogeochemical reactions occurring within aquifers. Iron (hydr)oxides, which are the predominant metallic oxides in soil, play a crucial role in degrading dissolved organic carbon (DOC), primarily through a process known as dissimilatory iron reduction (DIR). However, the efficiency of this reaction varies depending on the mineralogy and composition of the aquifer, and this understanding is essential for adequate water quality in ASR. The objective of this study is to investigate the impact of iron (hydr)oxide on acetate, as an organic carbon source, attenuation during the ASR. To achieve this, three sets of laboratory sediment columns were prepared, each containing a different type of iron (hydr)oxide minerals: ferrihydrite, goethite, and hematite. Following an acclimation period of 28 days to simulate the microcosm within an aquifer, the columns were continuously supplied with the simulated river water spiked with acetate (DOC 40-60 mg L-1), and the acetate concentration in the effluent was monitored. The result revealed that the column containing ferrihydrite achieved 97% acetate attenuation through DIR with anoxic conditions (DO < 0.1 mg L-1), while the goethite and hematite columns exhibited limited attenuation rates of 40 and 50%, respectively. Furthermore, the efficiency of acetate attenuation in the ferrihydrite columns increased with the content of ferrihydrite but experienced a rapidly declined at higher contents (3-4%), possibly due to the partial conversion of ferrihydrite to goethite as a result of the interaction between ferrihydrite and the Fe(II) produced during DIR. Additionally, an analysis of the microbial community demonstrated that microorganisms known to possess the ability to reduce iron (hydr)oxides under anaerobic conditions were abundant in the ferrihydrite columns.


Assuntos
Água Subterrânea , Compostos de Ferro , Ferro , Minerais , Ferro/química , Matéria Orgânica Dissolvida , Óxidos , Oxirredução , Compostos Férricos/química , Acetatos
2.
Water Res ; 249: 120954, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064781

RESUMO

Aquifer storage and recovery (ASR) is a promising water management technique in terms of quantity and quality. During ASR, iron (Fe) (hydr)oxides contained in the aquifer play a crucial role as electron acceptors in attenuating dissolved organic carbon (DOC) in recharging water through dissimilatory iron reduction (DIR). Considering the preference of electron acceptors, nitrate (NO3⁻), possibly coexisting with DOC as the prior electron acceptor to Fe (hydr)oxides, might influence DIR by interrupting electron transfer. However, this phenomenon is yet to be clarified. In this study, we systematically investigated the potential effect of NO3⁻ on DOC attenuation during ASR using a series of sediment columns representing typical aquifer conditions. The results suggest that DOC attenuation could be enhanced by the presence of NO3⁻. Specifically, total DOC attenuation was notably higher than that from the stoichiometric calculation simply employing NO3⁻ as the additional electron acceptor to Fe (hydr)oxides, implying a synergetic effect of NO3⁻ in the overall reactions. X-ray photoelectron spectroscopy analyzes revealed that the Fe(II) ions released from DIR transformed the Fe (hydr)oxides into a less bioavailable form, inhibiting further DIR. In the presence of NO3⁻, however, no aqueous Fe(II) was detected, and another form of Fe (hydr)oxide appeared on the sediment surface. This may be attributed to nitrate-dependent Fe(II) oxidation (NDFO), in which Fe(II) is (re)oxidized into Fe (hydr)oxide, which is available for the subsequent DOC attenuation. These mechanisms were supported by the dominance of DIR-relevant bacteria and the growth of NDFO-related bacteria in the presence of NO3⁻.


Assuntos
Água Subterrânea , Nitratos , Compostos Férricos , Matéria Orgânica Dissolvida , Ferro/análise , Oxirredução , Óxidos , Oxidantes , Água , Compostos Ferrosos
3.
Chemosphere ; 271: 129857, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736220

RESUMO

Precipitates induced by the pore-scale mixing of iron sulfate solutions with simulated groundwater were investigated using a microfluidic pore model to assess the environmental impacts of the infiltration of acid mine drainage into a shallow aquifer. This model was employed to visualize the formation of precipitates in a porous network and to evaluate their physicochemical influences on pore flow. Four types of groundwater (Na-HCO3, Na-SO4, Na-Cl, and Ca-Cl) were evaluated, and precipitation rates were calculated by processing images of precipitates in the pores captured via microscopy. The results showed that all groundwater types formed a yellow-brownish precipitate at the interface of the iron solution and simulated groundwater flow. Microscopic X-ray analyses demonstrated that precipitate morphology varied with groundwater type. Faster precipitation was observed in the following order by groundwater type: Na-HCO3 > Na-Cl > Na-SO4 > Ca-Cl, which was attributed to the different stability constants of the major anions in each simulated groundwater with Fe ions. Chemical equilibrium models suggested that precipitates were Fe minerals, with FeOOH as the predominant form consistent with the results of X-ray photoelectron spectrometry. The presence of FeOOH implies that precipitates may serve as an effective sorption barrier against some nutrients and heavy metals for the underlying groundwater. However, dye-flow experiments suggested that the precipitates may clog aquifer pores, thereby altering hydrogeological properties in the aquifer.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Ferro , Microfluídica , Sulfatos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...