Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793521

RESUMO

This paper brings a new insight into understanding the influence of macrocapsules in packing systems, which can be useful in designing the inert structure of self-healing concrete. A variety of tubular macrocapsules, in terms of types and sizes, was used to assess the capsules' effect in the packing, together with various aggregate types and fractions. The voids ratios (U) of aggregate mixtures were evaluated experimentally and compared with the prediction via the particle packing model of Dewar. The packing of coarse particles was found to be considerably affected by the presence of macrocapsules, while no capsules' effect on the packing of fine particles was attained. A higher capsule dosage and capsule aspect ratio led to a higher voids ratio. In the formulation of the inert structure, the packing disturbance due to capsules can be minimised by increasing the content of fine aggregates over coarse aggregates. Dewar's model showed a good compatibility with experimental results in the absence of capsules. However, the model needed to be upgraded for the introduction of tubular macrocapsules. Accordingly, the effect of macrocapsules was extensively analysed and a 'U model' for capsules (with some limitations) was finally proposed, offering a high predicting accuracy.

2.
Materials (Basel) ; 14(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920620

RESUMO

Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.

3.
Sci Technol Adv Mater ; 21(1): 661-682, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33061839

RESUMO

Development and commercialization of self-healing concrete is hampered due to a lack of standardized test methods. Six inter-laboratory testing programs are being executed by the EU COST action SARCOS, each focusing on test methods for a specific self-healing technique. This paper reports on the comparison of tests for mortar and concrete specimens with polyurethane encapsulated in glass macrocapsules. First, the pre-cracking method was analysed: mortar specimens were cracked in a three-point bending test followed by an active crack width control technique to restrain the crack width up to a predefined value, while the concrete specimens were cracked in a three-point bending setup with a displacement-controlled loading system. Microscopic measurements showed that with the application of the active control technique almost all crack widths were within a narrow predefined range. Conversely, for the concrete specimens the variation on the crack width was higher. After pre-cracking, the self-healing effect was characterized via durability tests: the mortar specimens were tested in a water permeability test and the spread of the healing agent on the crack surfaces was determined, while the concrete specimens were subjected to two capillary water absorption tests, executed with a different type of waterproofing applied on the zone around the crack. The quality of the waterproofing was found to be important, as different results were obtained in each absorption test. For the permeability test, 4 out of 6 labs obtained a comparable flow rate for the reference specimens, yet all 6 labs obtained comparable sealing efficiencies, highlighting the potential for further standardization.

4.
Materials (Basel) ; 13(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150887

RESUMO

Capsule-based self-healing is increasingly being targeted as an effective way to improve the durability and sustainability of concrete infrastructures through the extension of their service life. Assessing the mechanical and durability behaviour of self-healing materials after damage and subsequent autonomous repair is essential to validate their possible use in real structures. In this study, self-healing mortars containing cementitious tubular capsules with a polyurethanic repairing agent were experimentally investigated. Their mechanical behaviour under both static and cyclic loading was analysed as a function of some factors related to the capsules themselves (production method, waterproof coating configuration, volume of repairing agent stored) or to the specimens (number, size and distribution of the capsules in the specimen). Their mechanical performances were quantified in terms of recovery of load-bearing capacity under static conditions and number of cycles to failure as a function of the peak force under cyclic conditions. Positive results were achieved, with a maximum load recovery index up to more than 40% and number of cycles to failure exceeding 10,000 in most cases, with peak force applied during cyclic loading at least corresponding to 70% of the estimated load-bearing capacity of the healed samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...