Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28357, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590838

RESUMO

Heavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.

2.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365335

RESUMO

Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...