Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836867

RESUMO

This work proposes an innovative method, based on the use of low-cost infrared thermography (IRT) instrumentation, to assess in real time the effectiveness of scoliosis braces. Establishing the effectiveness of scoliosis braces means deciding whether the pressure exerted by the brace on the patient's back is adequate for the intended therapeutic purpose. Traditionally, the evaluation of brace effectiveness relies on empirical, qualitative assessments carried out by orthopedists during routine follow-up examinations. Hence, it heavily depends on the expertise of the orthopedists involved. In the state of the art, the only objective methods used to confirm orthopedists' opinions are based on the evaluation of how scoliosis progresses over time, often exposing people to ionizing radiation. To address these limitations, the method proposed in this work aims to provide a real-time, objective assessment of the effectiveness of scoliosis braces in a non-harmful way. This is achieved by exploiting the thermoelastic effect and correlating temperature changes on the patient's back with the mechanical pressure exerted by the braces. A system based on this method is implemented and then validated through an experimental study on 21 patients conducted at an accredited orthopedic center. The experimental results demonstrate a classification accuracy slightly below 70% in discriminating between adequate and inadequate pressure, which is an encouraging result for further advancement in view of the clinical use of such systems in orthopedic centers.


Assuntos
Escoliose , Humanos , Escoliose/diagnóstico por imagem , Escoliose/terapia , Termografia , Tempo , Braquetes
2.
Life (Basel) ; 12(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35207532

RESUMO

The lockdown restrictions, as a first solution to contain the spread of the COVID-19 pandemic, have affected everyone's life and habits, including the time spent at home. The latter factor has drawn attention to indoor air quality and the impact on human health, particularly for chemical pollutants. This study investigated how the increasing time indoor influenced exposure to natural radioactive substances, such as radon gas. To calculate the radiological risk, we considered the most consolidated indices used for radiation protection: annual effective dose, excess lifetime cancer risk, and the lung cancer case. Furthermore, two different exposure times were considered: pre-lockdown and post-lockdown. The lockdown increased the indoor exposure time by 4% and, consequently, the radiological risk factors by 9%. Furthermore, the reference value of 300 Bq/m3, considered acceptable for human radiation protection, may need to be lowered further in the case of conditions similar to those of the lockdown period.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33557403

RESUMO

The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded-meltblown-spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university "third-mission".


Assuntos
COVID-19/prevenção & controle , Laboratórios , Máscaras/normas , Pandemias , Humanos , Itália
4.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009776

RESUMO

The time-base used by digital storage oscilloscopes allows limited selections of the sample rate, namely constrained to a few integer submultiples of the maximum sample rate. This limitation offers the advantage of simplifying the data transfer from the analog-to-digital converter to the acquisition memory, and of assuring stability performances, expressed in terms of absolute jitter, that are independent of the chosen sample rate. On the counterpart, it prevents an optimal usage of the memory resources of the oscilloscope and compels to post processing operations in several applications. A time-base that allows selecting the sample rate with very fine frequency resolution, in particular as a rational submultiple of the maximum rate, is proposed. The proposal addresses the oscilloscopes with time-interleaved converters, that require a dedicated and multifaceted approach with respect to architectures where a single monolithic converter is in charge of signal digitization. The proposed time-base allows selecting with fine frequency resolution sample rate values up to 200 GHz and beyond, still assuring jitter performances independent of the sample rate selection.

5.
Sensors (Basel) ; 20(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940878

RESUMO

In this work, two fully-textile wearable devices, to be used as chipless identification tags in identification and tracking applications are presented. For the fabrication of the fully-textile tags, a layer of fleece was used as a substrate, while an adhesive non-woven conductive fabric was employed for the conductive parts. To allow radio-frequency identification of these chipless tags, two alternative techniques were used. One relies on associating a binary code with the resonance frequency of resonant devices: the presence/absence of the resonance peaks in the transmission scattering parameter, | S 21 | , of a set of resonators is used to encode a string of bits. The second technique for accomplishing radio-frequency identification of the chipless tags resorts to a frequency-shift coding technique, which is implemented by modifying the configuration of a hairpin resonator. The obtained numerical and experimental results confirm the suitability of the proposed strategies for obtaining entirely-textile, wearable chipless tags for identification and tracking purposes, which can be particularly useful, especially in the industrial sector. In this field, in fact, the proposed solutions would guarantee a seamless integration with clothes and would facilitate the user's interaction with the IoT infrastructure. In this regard, one of the envisaged application scenarios related to the tracking of hides in the leather industry is also presented.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31533284

RESUMO

The International Commission on Radiation Protection (ICRP) in 2011 recommended the lowering of the annual eye lens dose limit from 150 mSv/year to 20 mSv/year in order to reduce the risk of X-ray-induced lens opacity in medical staff. The purpose of this study was to assess the status of knowledge of the new eye lens dose limit and of the radioprotection culture among operators. To this end, a questionnaire was administered to physicians, X-ray technicians, and nurses working in five hospitals of the Campania region, Italy. A total of 64 questionnaires were collected in the hospital departments in which procedures involving ionizing radiation were routinely performed. The data analyzed yielded the following results: 12 operators affirmed to know the new eye lens dose limit, 53 operators routinely wore lead aprons, and 23 operators used lead glasses. Four workers performed eye lens dosimetry through specific dosimeters. A significant lack of knowledge of the reduced eye lens dose limit suggests the need to implement radioprotection-training programs aimed at raising awareness about the importance of health care in the workplace and at reducing the risk of radio-induced effects to the eye lens.


Assuntos
Cristalino/efeitos da radiação , Exposição Ocupacional/análise , Doses de Radiação , Pessoal de Saúde , Humanos , Itália , Equipamentos de Proteção , Dosímetros de Radiação , Proteção Radiológica
7.
Sensors (Basel) ; 18(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735956

RESUMO

This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

8.
Sensors (Basel) ; 17(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112128

RESUMO

Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.


Assuntos
Tecnologia sem Fio , Manutenção , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...