Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 727: 138558, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498208

RESUMO

Stable isotopes in wood lignin methoxyl groups (δ2HLM and δ13CLM values) have been suggested as valuable complementary paleoclimate proxies. In permafrost forests, tree growth is influenced by multiple factors, however temperature appears to have the strongest impact on tree growth and, therefore, on carbon cycling. To test whether δ2HLM and δ13CLM values of trees from permafrost regions might record climate parameters, two dominant tree species (Larix gmelinii, larch, and Pinus sylvestris var. mongolica, pine) collected from a permafrost forest in China's Greater Hinggan Mountains, were investigated. The two tree species larch and pine covered time spans of 1940 to 2013 and 1870 to 2013, respectively. Results showed significant correlations of pine and larch δ2HLM values and larch δ13CLM values with temperatures and in particular with the mean temperature of the growing season from April to August. However, only weak correlations of δ2HLM and δ13CLM values with moisture conditions, such as precipitation amount and relative humidity were observed. In addition, species specificity in the climate response was most obvious for δ13CLM values. Compared to a temperature reconstruction based on tree ring width, pine δ2HLM-based reconstruction showed strongest spatial correlations with regional temperature. Therefore, δ2HLM values might be a promising proxy to reconstruct growing-season temperatures in permafrost regions.


Assuntos
Pergelissolo , China , Florestas , Lignina , Temperatura , Árvores , Madeira
2.
Rapid Commun Mass Spectrom ; 31(19): 1589-1598, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28696517

RESUMO

RATIONALE: In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ2 Hmethoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ2 H values from wood. METHODS: We measured δ2 Hmethoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ2 Hmethoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ2 Hmethoxyl values were measured as CH3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 µL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. RESULTS: Testing the climate response of the δ2 Hmethoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ2 Hmethoxyl series do not show any significant correlation to climate parameters. CONCLUSIONS: Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ2 H values of the xylem water and, therefore, higher δ2 H values in the lignin methoxyl groups. Therefore, we suggest that δ2 Hmethoxyl values of high elevation larch trees might serve as a summer precipitation proxy.


Assuntos
Larix/química , Lignina/química , Árvores/química , Madeira/química , Altitude , Clima , Deutério/análise , Hidrogênio/análise , Espectrometria de Massas , Estações do Ano , Suíça
3.
Sci Total Environ ; 579: 263-271, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889214

RESUMO

Stable hydrogen isotope ratios of lignin methoxyl groups (δ2HLM values) in wood have been shown to mirror the δ2H signatures of precipitation (δ2Hprecip values). Thus, δ2HLM values were suggested to serve as a potential paleotemperature proxy since δ2Hprecip values are dominantly controlled by air temperature in the mid-latitudes. A recent study where a significant δ2HLM-temperature relationship was found for a European transect with mean annual temperatures ranging from -4 to 17°C strengthened this assumption. However, using δ2HLM values as a paleotemperature proxy requires quantification of noise from site-, species- and biosynthetic-specific influences to determine the significance of recording smaller temperature changes. Here, we measured δ2HLM values of tree-ring sections covering 1981-1990 and 1991-2011 of four different tree species (European beech, English oak, Scots pine, Norway spruce) at 15 sampling sites across Germany. The maximum difference in mean annual temperature between sample sites was 5°C and all sites showed small temperature increases from 1981 to 1990 to 1991-2011 (mean Δ=0.7°C). For all species investigated, the maximum difference of δ2HLM within the tree was <10mUr or ‰ (median values) and between trees at a single site was ≤28mUr (median values). The general pattern of the spatial δ2HLM-temperature relationship found for the European transect was confirmed here although a significant correlation was lacking. This can be explained by the lower spatial δ2Hprecip-temperature correlation (R2=0.39) found for sampling sites in this study and the δ2HLM differences between trees. Nevertheless, the temporal changes in δ2HLM values of European beech trees correctly reflected within ±2°C the temperature change at every sampling site. Therefore, we suggest that δ2HLM values of European beech trees have considerable potential for reconstructing temperature changes when applied on tree-ring chronologies and consider this approach particularly suited for Late Holocene climate studies.


Assuntos
Monitoramento Ambiental/métodos , Hidrogênio/análise , Lignina/análise , Árvores/química , Mudança Climática , Alemanha
4.
Sci Total Environ ; 574: 1276-1282, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712864

RESUMO

Tree-rings are widely used climate archives providing annual resolutions on centennial to millennial timescales. Stable isotope ratios of tree-rings have been applied to assist with the delineation of climate parameters such as temperature and precipitation. Here, we investigated stable hydrogen isotope ratios (expressed as δ2H values) of lignin methoxyl groups of wood from various tree species collected along a ~3500km north-south transect across Europe with mean annual temperatures (MAT) ranging from -4 to +17°C. We found a strong linear relationship between MATs and δ2H values of wood lignin methoxyl groups. We used this relationship to predict MATs from randomly collected wood samples and found general agreement between predicted and observed MATs for the mid-latitudes on a global scale. Our results are discussed in context of their paleoclimate relevance and suggest that δ2H values of lignin methoxyl groups might have the potential to reconstruct MATs when applied on mid-latitudinal tree-ring chronologies of the Late Holocene.

5.
Isotopes Environ Health Stud ; 51(1): 143-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706484

RESUMO

Stable hydrogen and carbon isotope ratios of methoxyl groups (δ(2)Hmethoxyl and δ(13)Cmethoxyl values, respectively) in plant material have been shown to possess characteristic signatures. These isotopic signatures can be used for a variety of applications such as constraining the geographical origin and authenticity of biomaterials. Recently, it has also been suggested that δ(2)Hmethoxyl values of sedimentary organic matter of geological archives might serve as a palaeoclimate/-hydrology proxy. However, deposited organic matter is subject to both biotic and abiotic degradation processes, and therefore an evaluation of their potential impact on the δ(2)Hmethoxyl and δ(13)Cmethoxyl values would allow more reliable interpretations of both isotopic signatures. Here, we investigated this potential influence by exposing foliar litter of five different tree species (Sycamore maple, Mountain ash, European beech, Norway spruce and Scots pine) to natural degradation. The foliar litter was sampled at nine intervals over a 27-month period, and the bulk methoxyl content as well as the δ(2)Hmethoxyl and δ(13)Cmethoxyl values were measured. At the end of the experiment, a loss of the bulk methoxyl in the range of ∼40-70% was measured. Linear regression analysis showed no dependence of δ(2)Hmethoxyl values with methoxyl content for four out of five foliar litter samples studied (R(2) in the range of 0.03 and 0.36, p > .05). On the contrary, the δ(13)Cmethoxyl values showed significant linear correlations for the great majority of the foliar litter samples (R(2) in the range of 0.51 and 0.73, p < .05). The litter species with the greatest methoxyl loss (Mountain ash, Scots pine and Norway spruce) showed the strongest (13)C enrichment, by up to ∼5‰. Since δ(2)Hmethoxyl shows no systematic overall change during the course of degradation, we propose that there is considerable potential for its use as a palaeoclimate proxy for a wide range of geological archives containing, for instance, fossil wood or sedimentary organic matter. Care would need to be taken if δ(13)Cmethoxyl values of degraded organic matter are used for palaeoclimate/-environmental investigations.


Assuntos
Isótopos de Carbono/análise , Deutério/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Árvores/metabolismo , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...