Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(5): 621, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106260

RESUMO

The African continent has the most extensive grassland cover in the world, providing valuable ecosystem services. African grasslands, like other continental grasslands, are prone to various anthropogenic disturbances and climate, and require data-driven monitoring for efficient functioning and service delivery. Yet, knowledge of how the African grassland cover has changed in the past years is lacking, especially at the subcontinent level, due to lack of relevant long-term, Africa-wide observations and experiments. In this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) data spanning 2001 to 2017 to conduct land use land cover (LULC) change analyses and map grassland distribution in Africa. Specifically, we assessed the changes in grassland cover across and within African subcontinents over three periods (2001-2013, 2013-2017, and 2001-2017). We found that the African grassland cover was 16,777,765.5 km2, 16,999,468.25 km2, and 16,968,304.25 km2 in 2001, 2013, and 2017, respectively. There were net gain (1.32%) and net loss (- 0.19%) during 2001-2013 and 2013-2017 periods, respectively, and the annual rate of change during these periods were 0.11% and - 0.05%, respectively. Generally, the African grassland cover increased by 1.14% (0.07% per annum) over the entire study period (2001-2017) at the expense of forestland, cropland, and built-up areas. The East and West African grassland cover reduced by 0.07% (- 0.02% per annum) and 1.35% (- 0.34% per annum), respectively from 2013 to 2017 but increased in other periods. On the other hand, the grassland cover in North and Central Africa increased throughout the three periods while that of Southern Africa decreased over the three periods. Overall, the net gains in the grassland cover of other African subcontinents offset the loss in Southern Africa and promoted the overall gain across Africa. This study underscores the need for continuous monitoring of African grasslands and the causes of their changes for efficient delivery of ecosystem services.


Assuntos
Ecossistema , Pradaria , Conservação dos Recursos Naturais , Monitoramento Ambiental , África Austral
2.
Sci Total Environ ; 825: 154053, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217057

RESUMO

Heracleum mantegazzianum Sommier & Levier (Giant hogweed) has spread across Europe after its introduction as an ornamental from the native range in the Western Greater Caucasus. In addition to its invasive capability, H. mantegazzianum reduces the alpha diversity of native species in the non-native range and can cause second-degree burns when its phytotoxic sap contacts the skin upon exposure to sunlight. Previous studies on H. mantegazzianum distribution focused on individual countries, therefore we know little about the potential shift of the species distribution under changing climate at the continental scale. To fill that gap in the current knowledge, we aimed to (i) identify the most important climatic factors for the distribution of H. mantegazzianum in Europe, (ii) recognize areas that will be suitable and unsuitable for future climate scenarios to prioritize management action. Our study showed that the mean temperature of the coldest quarter (bio11) and temperature annual range (bio7) were the most important bioclimatic variables predicting the suitable habitat of the species in Europe. For all scenarios, we found that the majority of the range changes expected by 2100 will occur as early as 2041. We predicted an overall decrease in climatically suitable area for H. mantegazzianum under climate change with over three quarters (i.e. 94%) of the suitable area reduced under the Shared Socioeconomic Pathway (SSP) 585 in 2100. However, under the same scenario, climate conditions will likely favour the expansion (i.e. 20%) of H. mantegazzianum in northern Europe. The results from the present study will help in developing a climate change-integrated management strategy, most especially in northern Europe where range expansion is predicted.


Assuntos
Heracleum , Mudança Climática , Ecossistema , Europa (Continente) , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...