Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4322-4325, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018952

RESUMO

This work presents a modular, light-weight head-borne neuromodulation platform that achieves low-power wireless neuromodulation and allows real-time programmability of the stimulation parameters such as the frequency, duty cycle, and intensity. This platform is comprised of two parts: the main device and the optional intensity module. The main device is functional independently, however, the intensity control module can be introduced on demand. The stimulation is achieved through the use of energy-efficient µLEDs directly integrated in the custom-drawn fiber-based probes. Our platform can control up to 4 devices simultaneously and each device can control multiple LEDs in a given subject. Our hardware uses off-the-shelf components and has a plug and play structure, which allows for fast turn-over time and eliminates the need for complex surgeries. The rechargeable, battery-powered wireless platform uses Bluetooth Low Energy (BLE) and is capable of providing stable power and communication regardless of orientation. This presents a potential advantage over the battery-free, fully implantable systems that rely on wireless power transfer, which is typically direction-dependent, requires sophisticated implantation surgeries, and demands complex custom-built experimental apparatuses. Although the battery life is limited to several hours, this is sufficient to complete the majority of behavioral neuroscience experiments. Our platform consumes an average power of 0.5 mW, has a battery life of 12 hours.


Assuntos
Tecnologia sem Fio , Fontes de Energia Elétrica , Cabeça , Próteses e Implantes
2.
J Neurophysiol ; 120(2): 795-811, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718809

RESUMO

Electrical intraspinal microstimulation (ISMS) at various sites along the cervical spinal cord permits forelimb muscle activation, elicits complex limb movements and may enhance functional recovery after spinal cord injury. Here, we explore optogenetic spinal stimulation (OSS) as a less invasive and cell type-specific alternative to ISMS. To map forelimb muscle activation by OSS in rats, adeno-associated viruses (AAV) carrying the blue-light sensitive ion channels channelrhodopsin-2 (ChR2) and Chronos were injected into the cervical spinal cord at different depths and volumes. Following an AAV incubation period of several weeks, OSS-induced forelimb muscle activation and movements were assessed at 16 sites along the dorsal surface of the cervical spinal cord. Three distinct movement types were observed. We find that AAV injection volume and depth can be titrated to achieve OSS-based activation of several movements. Optical stimulation of the spinal cord is thus a promising method for dissecting the function of spinal circuitry and targeting therapies following injury. NEW & NOTEWORTHY Optogenetics in the spinal cord can be used both for therapeutic treatments and to uncover basic mechanisms of spinal cord physiology. For the first time, we describe the methodology and outcomes of optogenetic surface stimulation of the rat spinal cord. Specifically, we describe the evoked responses of forelimbs and address the effects of different adeno-associated virus injection paradigms. Additionally, we are the first to report on the limitations of light penetration through the rat spinal cord.


Assuntos
Medula Cervical/fisiologia , Membro Anterior/fisiologia , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Optogenética , Animais , Dependovirus/fisiologia , Eletromiografia , Feminino , Membro Anterior/inervação , Neurônios GABAérgicos/fisiologia , Músculo Esquelético/inervação , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...