Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2123056119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867835

RESUMO

The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model.


Assuntos
Actinas , Actomiosina , Membrana Celular , Proteínas Ligadas por GPI , Estresse Mecânico , Actinas/química , Actomiosina/química , Animais , Células CHO , Membrana Celular/química , Cricetulus , Proteínas Ligadas por GPI/química , Lipídeos/química
2.
Cell ; 177(7): 1738-1756.e23, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31104842

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the ß1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.


Assuntos
Integrina beta1/metabolismo , Mecanotransdução Celular , Microdomínios da Membrana/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Cricetulus , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta1/genética , Microdomínios da Membrana/genética , Vinculina/genética , Vinculina/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
J Lipid Res ; 57(2): 159-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26394904

RESUMO

The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite.


Assuntos
Membrana Celular/química , Glicosilfosfatidilinositóis/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Actinas/química , Actinas/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Glicosilfosfatidilinositóis/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência
4.
Cell ; 161(3): 581-594, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910209

RESUMO

Understanding how functional lipid domains in live cell membranes are generated has posed a challenge. Here, we show that transbilayer interactions are necessary for the generation of cholesterol-dependent nanoclusters of GPI-anchored proteins mediated by membrane-adjacent dynamic actin filaments. We find that long saturated acyl-chains are required for forming GPI-anchor nanoclusters. Simultaneously, at the inner leaflet, long acyl-chain-containing phosphatidylserine (PS) is necessary for transbilayer coupling. All-atom molecular dynamics simulations of asymmetric multicomponent-membrane bilayers in a mixed phase provide evidence that immobilization of long saturated acyl-chain lipids at either leaflet stabilizes cholesterol-dependent transbilayer interactions forming local domains with characteristics similar to a liquid-ordered (lo) phase. This is verified by experiments wherein immobilization of long acyl-chain lipids at one leaflet effects transbilayer interactions of corresponding lipids at the opposite leaflet. This suggests a general mechanism for the generation and stabilization of nanoscale cholesterol-dependent and actin-mediated lipid clusters in live cell membranes.


Assuntos
Proteínas Ligadas a Lipídeos/metabolismo , Actinas/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Glicosilfosfatidilinositóis/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilserinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...